
NASA TECHNICAL NOTE

LOAN COPY: RE) AFWL (WLIL-2)
KIRTLAND AFB, N MEX

INVESTIGATION OF A NEARLY ISENTROPIC MIXED-COMPRESSION AXISYMMETRIC INLET SYSTEM AT MACH NUMBERS 0.6 TO 3.2

by Donald B. Smeltzer and Norman E. Sorensen

Ames Research Center

Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1968

INVESTIGATION OF A NEARLY ISENTROPIC MIXED-COMPRESSION AXISYMMETRIC INLET SYSTEM AT MACH NUMBERS 0.6 TO 3.2

By Donald B. Smeltzer and Norman E. Sorensen

Ames Research Center Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTI price \$3.00

INVESTIGATION OF A NEARLY ISENTROPIC MIXED-COMPRESSION

AXISYMMETRIC INLET SYSTEM AT MACH

NUMBERS 0.6 TO 3.2

By Donald B. Smeltzer and Norman E. Sorensen

Ames Research Center

SUMMARY

A 20-inch capture diameter model of a mixed-compression axisymmetric inlet system has been designed and tested. The inlet system was 1.4 capture diameters long measured from the cowl lip to the engine face. The design Mach number was 3.0, and off-design performance was obtained by translation of the cowl. Vortex generators were employed just downstream of the throat to reduce the total-pressure distortion at the engine face. The main test objective was to determine experimentally the major inlet parameters of bleed mass-flow ratio, total-pressure recovery, and total-pressure distortion at the engine face. Tests were conducted over the Mach number range 0.6 to 3.2 at angles of attack from 0° to 8° and at a tunnel total pressure of 15 psia which corresponded to a Reynolds number of about 2×10° per foot at Mach number 3.0.

The supersonic diffuser of the inlet was designed with the aid of a computer program which employs the method of characteristics. The subsonic diffuser was designed to have a linear variation of Mach number from the end of the throat to the engine face. Results indicated a level of performance at Mach number 3.0 of 90 to 93 percent total-pressure recovery at the engine face with a bleed mass-flow ratio of 7.5 to 12 percent and a total-pressure distortion level of about 10 percent. The off-design performance was generally better than at Mach number 3.0. Other results obtained at Mach number 3.0 indicated that the inlet would remain started at 2° to 3° angle of attack without a change in geometry if the maximum pressure recovery at 0° were degraded about 2 to 3 percent. The transonic results for Mach numbers from 0.6 to 1.3 included experimentally measured additive drag as well as the internal performance.

INTRODUCTION

Results of several investigations of mixed-compression axisymmetric inlet systems designed for optimum performance at Mach number 3.0 and capable of off-design performance by translation of the cowl are presented in references 1 to 3. Analysis of these results and further theoretical studies indicated the potential for achieving higher levels of performance over the Mach number range from 0 to 3.0 than were reported for these inlet systems. These studies revealed that the supersonic diffuser could be re-designed to allow a potential improvement in pressure recovery of about 3.5 percent at Mach 3.0.

The length of this re-designed diffuser would be about the same as the length of those of reference 3. Also, there were indications that the use of vortex generators to reduce total-pressure distortion at the engine face station would permit the length of the subsonic diffuser to be reduced without a large attendant loss in performance. It, therefore, seemed reasonable to expect that a shorter inlet system could be designed that would perform as well as those discussed in references 1 to 3, or better.

The purpose of this investigation was to design a large-scale model of an inlet system according to the findings discussed above and to measure its performance in wind-tunnel tests. The model was tested at Mach numbers from 0.6 to 3.2 and at angles of attack from 0° to 8°. For all the tests, the wind-tunnel total pressure was constant at the value corresponding to a Reynolds number of about 2×10^6 per foot at Mach number 3.0. Quantities deduced from the measurements were total-pressure recovery, bleed mass-flow ratio, total-pressure distortion at the engine face station, sensitivity to unstarting caused by changes in the angle of attack, and transonic additive drag.

SYMBOLS

$A_{\mathbf{c}}$	capture area
A _{min}	minimum duct area normal to the average local flow
A_{χ}	local duct area normal to the inlet centerline
ъ	span of vortex generators
$\mathbf{c}_{\mathbf{D_a}}$	additive drag coefficient based on $A_{\mathbf{c}}$
D	capture diameter
h	local height
M	Mach number
m	mass flow
р	static pressure
p_{p}	pitot pressure
p_{t}	total pressure
Δp _{t2}	total-pressure distortion parameter, $\frac{p_{t_{2_{\max}}} - p_{t_{2_{\min}}}}{\overline{p}_{t_{2}}}$
$\frac{r}{R}$	ratio of cowl or centerbody radius to capture radius

<u>x</u> R	ratio of axial distance measured from the tip of the centerbody
	to capture radius
$\left(\frac{\mathbf{x}}{\mathbf{R}}\right)_{\mathbf{c}}$	ratio of axial distance measured from the cowl lip to capture radius
$\frac{\Delta x}{R}$, $\left(\frac{\Delta x}{R}\right)_{C}$	incremental $\frac{x}{R}$, $\left(\frac{x}{R}\right)_{C}$
$\left(\frac{\underline{x}}{\overline{R}}\right)_{\text{lip}}$	ratio of the axial distance from the tip of the centerbody to the cowl lip divided by the capture radius
α	inlet angle of attack, deg
α _u	angle of attack for incipient unstart, deg
	Subscripts
∞	free stream
0	inlet lip (theoretical)
i	inlet lip (measured)
ı	local
1	throat
2	engine face
pl	bleed

Superscript

-- average value

NOTE: The letters A, B, and C on the plotted and tabulated data refer to progressively restricted bleed exit settings, A being the maximum flow condition and C the most restricted.

MODEL AND INSTRUMENTATION

The model is shown in figure 1 installed in one of the supersonic wind tunnels. Detailed sketches of the model and instrumentation are presented in figure 2. It is evident from figure 2(a) that off-design operation of the model is achieved by translating the inlet cowl while off-design operation of

the inlet in flight would be achieved by translating the inlet centerbody. It was found that model construction could be simplified without altering off-design internal area distributions by designing the cowl rather than the centerbody to be movable. Also shown is a translating sleeve and a fixed plug near the rear of the model. These were used to control the terminal shock-wave position. The outer shell of the model was attached to four hollow struts mounted on the centerbody sting support. The struts provided both support for the cowl and ducting for the centerbody bleed airflow to the free stream. Further details of the design and test instrumentation are presented in the following sections.

Design Considerations

This inlet was designed according to principles similar to those used in the design of the inlets discussed in references 1-3. High total-pressure recovery, low bleed-mass-flow ratio, and low total-pressure distortion at the engine face over the entire Mach number range from 0 to 3.0 were prime considerations, along with the requirement for low cowl drag and low transonic additive drag. The inlet coordinates are presented in table I. Also, they are presented graphically in figure 3 along with the internal area distributions for the various cowl lip positions tested. The important aspects of the design are discussed in the following paragraphs.

Supersonic diffuser .- This portion of the inlet was designed with the aid of the computer program described in reference 4 which employs the method of characteristics. The selected contours yielded nearly isentropic compression with an average theoretical total-pressure recovery of 0.993 at the inlet throat. The OO initial internal cowl angle allowed a low external cowl angle satisfying the requirement for low cowl drag. A 100 half-angle cone was used for the initial part of the centerbody, x/R = 0 to 1.502. Between x/R = 1.502and 3.502 a linear rate of change of surface angle with distance was used so that the total turning of the surface was 15° at station x/R = 3.502. With these initial contours the remaining internal contours of the cowl and centerbody were adjusted and "tested" using the computer program until the desired conditions were attained at the throat. These conditions were a uniform Mach number distribution of about 1.2 with essentially parallel flow and a totalpressure recovery above 0.990. Another constraint imposed on the design was that the pressure rise across a shock wave reflection on the centerbody or cowl could not exceed the value for incipient boundary layer separation as defined in reference 5. The capture mass flow at Mach number 1.0 was 39.1 percent. If desired, the capture mass flow in the transonic range could be increased through the use of a contracting centerbody. The design resulted in a cowl translation distance of about 0.7 capture diameter for withdrawing the cowl to the station of maximum centerbody diameter. No boundary-layer compensation was included in the design of the supersonic diffuser since previous experience (ref. 3) indicated that with the boundary-layer removal system none would be required. Local static pressure and Mach number distributions calculated by the method of characteristics computer program are presented in figure 4 for the design Mach number.

Subsonic diffuser .- The subsonic diffuser design was based upon the study reported in reference 3. The Mach number at the beginning of the subsonic diffuser was obtained from the calculations made for the supersonic diffuser (fig. 4). The location and area of the engine-face station were fixed. In the throat region (x/R = 4.022 to 4.252) the centerbody and cowl surfaces were frustums of cones which diverged from one another with a 2° included angle, the inner cowl surface being a straight-line continuation of the surface at the end of the supersonic diffuser. This provided a low and constant divergence of the duct area in the throat region for a range of cowl translation distance. These considerations caused the minimum throat area to be located at about x/R = 4.0. Area and continuity relationships were used to design the remainder of the subsonic diffuser from the aft end of the throat to the engine-face station (x/R = 4.252 to 5.352) to yield a linear Mach number variation. This variation was maintained for a range of cowl translation distances. As in the case of the supersonic diffuser no boundary-layer compensation was included. The resulting inlet was 1.4 capture diameters long measured from the cowl lip to the engine-face station.

Boundary-layer bleed system.- Control of the boundary layer to prevent flow separations caused by shock-wave impingements on the boundary layer in an adverse pressure gradient is of critical importance. Control in the present case was accomplished by removal of part of the boundary-layer flow through porous bleed zones. The model had four bleed zones as indicated in figure 2. Each had separate and remotely controlled exits to regulate each bleed flow from zero to maximum flow. Separation of the bleed air exit ducting on both the cowl and the centerbody prevented recirculation of the flow from the higher to the lower pressure regions. To insure choked flow at the bleed exits during the supersonic tests, exit fairings were used to maintain low back pressures. Cowl bleed zone I was located just upstream of the first shock-wave impingement shown in figure 4. Bleed zone II was located just upstream of the second shock-wave impingement on the centerbody. These locations were selected on the basis of the results of tests reported in reference 6. In these areas 0.125-inch-diameter holes were drilled to provide a uniform porosity of 41.5 percent. The bleed zones in the throat region (III and IV) were drilled with a similar pattern, but with every other row of holes eliminated. This resulted in an overall porosity of 20.8 percent. The bleed pattern in each zone could be altered by filling the holes with a plastic resin material. Figure 2(b) shows the pattern selected for investigation throughout the Mach number range.

Vortex generators. Vortex generators were used to reduce the total-pressure distortion at the engine face station thereby permitting the length of the subsonic diffuser to be minimized. They were installed just aft of the throat region. Forty generators were mounted on the centerbody and 54 on the cowl. Vortex generator details are shown in figure 2. They were designed according to procedures discussed in reference 7.

Instrumentation

Conventional but rather detailed instrumentation was provided. Six 6-tube total-pressure rakes were provided at the engine-face station. The

Tube spacing shown in the sketch in table II was used to obtain area weighted total pressure measurements. Measurements from the static-pressure rakes near the main duct exit (fig. 2(a)) were used in conjunction with the choked main duct exit area and the duct area at the rake station to calculate the main duct mass flow. The rakes were located to give an area-weighted average pressure. Static-pressure orifices were located in single opposing rows along the top internal surfaces of the cowl and centerbody. They extended to the end of the subsonic diffuser. Boundary-layer rakes were located as shown in figure 2(b). Measurements from a 9-tube pitot-pressure rake located at the beginning of the throat were used to evaluate the performance of the supersonic diffuser. Bleed-flow rate measurements in the centerbody boundary-layer removal ducts were made with 4-tube total-pressure rakes, each with a single static-pressure tube. Three of these rakes were mounted in the outer duct and four in the inner duct. The known choked areas and the static pressure measured in the bleed plenum chambers of the cowl were used to evaluate the bleed mass flow through the two zones on the cowl surface. Pressures were also measured in the centerbody bleed plenum chambers. For the transonic tests four rakes were installed at the point of maximum centerbody diameter to measure the total and static pressure at this station. Five total-pressure tubes and two static-pressure tubes were included on each rake. Both static- and totalpressure tubes were located to give area-weighted average pressures. The measurements from these rakes were used to calculate the inlet mass flow and the total momentum change from the free stream to the rake measurement station. These measurements, the pressure distribution on the centerbody, and a friction drag term were used to calculate the additive drag by the mathematical procedure of reference 8.

TEST PROCEDURE

The investigation was conducted in the 8- by 7-foot, 9- by 7-foot, and 11- by 11-foot test sections of the Ames Aeronautics Division Wind Tunnels and covered the Mach number range from 0.6 to 3.2. Data were obtained at angles of attack of 0° , 2° , 5° , and 8° .

Various patterns of boundary-layer bleed holes were tested at Mach number 3.0 in an attempt to achieve high total-pressure recovery, low totalpressure distortion at the engine face, and low bleed mass flow. For the selected bleed pattern shown in figure 2(b) the contraction ratio that produced the best performance was determined. Three levels of bleed mass flow were obtained with 3 different bleed-exit settings. These correspond to bleedexit settings A, B, and C referred to on the plotted data. Exit setting A represented the maximum bleed mass flow that could be removed for the selected boundary-layer-bleed hole pattern. Exit settings B and C represented progressively more reduced bleed mass flow. Data were obtained at all angles of attack and at off-design Mach numbers for these bleed-exit settings and the selected bleed pattern. No attempt was made to improve angle of attack or offdesign performance by alteration of the boundary-layer-bleed hole pattern or the bleed-exit settings. At angles of attack and off-design Mach numbers, data were recorded only for contraction ratios near the maximum (lowest throat Mach number) for which the inlet would remain started.

PRECISION OF DATA

The following table presents the estimated uncertainties of the primary parameters.

Parameter	Uncertainty
$_{ ext{p}_{ ext{t}_{\infty}}}/_{ ext{p}_{ ext{t}_{\infty}}}$	±0.005
$m_{\rm bl}/m_{\infty}$	±0.005
α	±0.1°
${\tt p/p}_{\!_{\infty}}$	±0.2
${ m M}_{\!\infty}$	±0.05
${\rm m_2/m_\infty}$	± 0.020 , $\alpha = 0^{\circ}$ and 2°

At angles of attack of 5° and 8° , mass-flow ratio may be in error by the order of ± 0.050 or more. The uncertainties in all the parameters except m_2/m_{∞} and $m_{\rm bl}/m_{\infty}$ have been well established by many wind-tunnel tests. The bleed mass-flow ratio, $m_{\rm bl}/m_{\infty}$, was determined from measurements of the change in the main duct flow with bleed-exit settings. The assumption was made that changes in the main duct mass flow could be measured more precisely than its absolute value. This method for determining bleed mass-flow ratio is more fully described in reference 3. The main duct mass-flow ratio, m_2/m_{∞} , was determined by comparison of the measured results with the difference of the mass flow known to be entering the inlet and the bleed mass flow.

RESULTS AND DISCUSSION

Detailed analysis of the data is not made in this report. The most important results already have been published in reference 2, and a thorough discussion of the results of the first three inlets of the series is presented in reference 3. The following, therefore, will be confined to a brief discussion of the pertinent results. Some of the significant trends of the data are noted, however, to aid in the understanding of the results.

Results of the investigation are tabulated in table II and plotted in figures 5 to 33. Table III is an index to the plotted data. Bleed mass-flow ratio is used as a parameter for much of the plotted data rather than the more conventional mass-flow ratio at the engine face. This is done because bleed mass flow is believed to be the more reliable quantity as was noted in the discussion of precision of data. At 0° angle of attack, mass flow at the engine face can be obtained by subtracting bleed mass flow from the theoretical mass flow shown in figure 5. These mass flows were obtained from a subprogram of reference 4 in which streamlines from the bow shock wave to the inlet lip radius were calculated. Variables are cowl lip position and

free-stream Mach number. The curves on this figure are applicable only at 0° angle of attack. Inlet contraction ratio as a function of cowl lip position is shown in figure 6. The symbols indicate the contraction ratios where data at 0° angle of attack were obtained. At Mach number 3.0, maximum pressure recovery occurred at the indicated contraction ratio. The contraction ratio at Mach number 3.2 was not changed from that at Mach number 3.0 and was therefore not optimum but represented an overspeed condition.

Supersonic Performance

Maximum design performance, exit setting B.- Shown in figure 7 are the maximum pressure recoveries with associated bleed mass-flow ratios and total-pressure distortions at the engine face obtained for various positions of the cowl lip. The maximum pressure recovery was obtained at other than maximum contraction ratio. With the cowl lip at the position for maximum pressure recovery, data were obtained for three levels of bleed mass-flow ratio, and those maximum points are shown in figure 8. Total-pressure distortion at the engine face is virtually unaffected over the range of bleed mass-flow ratios investigated.

Supercritical performance, $M_{\infty} = 3.20 - 1.55$, $\alpha = 0^{\circ}$. Performance in the supercritical range for the Mach number 3.0 maximum pressure recovery points of figure 7 is shown in figure 9. The maximum pressure recovery represents the point where the terminal shock wave system was near its most upstream position for which the inlet would remain started. Any further forward movement reduced the recovery or unstarted the inlet. As the terminal shock system was moved downstream from the throat (by increasing the main duct exit area), the pressure recovery at the engine face decreased due to the increased losses through the shock system resulting from the higher terminal shock wave Mach numbers. Concomitantly, the bleed flow decreased as a result of movement of the terminal shock system with respect to the porous bleed areas and the decrease in internal duct pressure. When the terminal shock system was downstream of the porous bleed area, further downstream movement did not change the bleed flow and the pressure recovery dropped abruptly. Only small changes in distortion occurred when the terminal shock system was moved within the confines of the porous bleed area but a rapid rise in distortion occurred as the terminal shock system was withdrawn downstream of the porous bleed area. The peculiarity of the shape of the curves of pressure recovery and distortion for the lowest contraction ratio tested, $(x/R)_{lip} = 2.658$, probably was caused by the considerable displacement of the bleed areas from the proper design position.

Performance in the supercritical operating range for Mach numbers 3.2 to 1.55 is shown in figure 10. Total-pressure recovery and total-pressure distortion at the engine face are plotted for three ranges of bleed mass-flow ratio, each curve corresponding to fixed bleed-exit area settings. The Mach number 3.2 data were obtained with the Mach number 3.0 geometry and therefore represent an overspeed condition. The contraction ratio used at other off-design Mach numbers was near the maximum for which the inlet remained started. Figure 10 includes data obtained with the inlet unstarted. These points are

separated from the supercritical data by dashed lines. Tabulated pressure recoveries and mass-flow ratios are included in table II for the conditions represented by the half-filled symbols.

Off-design maximum performance, $M_{\infty}=3.20-1.55$, $\alpha=0^{\circ}$. The maximum pressure recovery points from figure 10 are summarized in figure 11. The low-pressure recovery and high distortion at Mach number 2.9 probably result from poor boundary-layer control on the centerbody side of the flow passage. The low performance at this Mach number might be avoided by relocating the centerbody bleed areas.

Supercritical performance at angle of attack, M_{∞} = 3.00 - 1.75.- Performance in the supercritical operating range for the Mach numbers investigated is shown in figure 12. Total-pressure recovery and total-pressure distortion for bleed-exit setting B are shown. Mass-flow ratio at the engine face as measured by the main duct instrumentation is used as a parameter to facilitate inlet-engine matching studies at angle of attack. However, the mass-flow ratio at 5° and 8° may be in error by ± 0.050 or more. Data at these angles of attack should, therefore, be treated as qualitative. Points shown with the inlet unstarted (figs. 12(e) and (f)) are separated from the supercritical data by dashed lines.

Maximum performance at angle of attack, M_{∞} = 3.00 - 1.55.- Figure 13 shows the variation with Mach number of the maximum total-pressure recovery and corresponding total-pressure distortion for several angles of attack. Data for the three fixed bleed-exit settings are presented. The half-filled symbols indicate points where more data are available in table II.

Total-pressure profiles at the engine face, M_{∞} = 3.20 - 1.55, α = 0°.- Total-pressure profiles from each of the six equally spaced rakes shown in the sketch of table II are presented in figure 14. The data presented are for the maximum pressure recovery points in figure 11. Additional data are tabulated in table II.

Bleed mass-flow details, M_{∞} = 3.20 - 1.55, α = 0°.- Bleed mass-flow ratio through each of the four individual bleed zones is presented in figure 15. Summations of these individual bleed zone mass flows were shown in figure 10.

Bleed plenum chamber pressure recoveries, $M_{\infty}=3.20$ - 1.55, $\alpha=0^{\circ}$. Total-pressure recoveries within the individual bleed plenum chambers are shown in figure 16. They are the total-pressure recoveries associated with the bleed mass-flow ratios of figure 15. Data for the three bleed exit settings are shown. All the plenum pressures were measured by the static pressure orifices in the bleed plenum chambers shown in figure 2(b). Since the flow velocity was small, these orifices were assumed to measure total pressure. The maximum pressure recovery points from figure 16 are summarized in figure 17 as a function of free-stream Mach number.

Boundary-layer and throat flow profiles, M_{∞} = 3.00 - 2.50, α = 0°.- Figure 18 shows pitot pressure profiles at different stations along the inlet.

The profiles presented are for the contraction ratios giving maximum pressure recovery with bleed-exit setting B. A total-pressure profile at the engine-face station is shown for Mach number 3.0. Mixing induced by the vortex generators appears to have removed all semblance of a boundary layer. This profile was obtained by bending the tubes nearest the centerbody surface to the heights indicated by the profile. No profiles were obtained for Mach numbers below 2.5.

Static-pressure distributions, $M_{\infty}=3.20$ - 1.55, $\alpha=0^{\circ}$ - Figures 19 through 27 present surface static-pressure distributions for both the cowl and centerbody for the Mach number range investigated. The pressure distributions are for the conditions corresponding to those for the half-filled symbols of figure 10 for bleed-exit setting B. The inlet geometry at each Mach number is indicated schematically on each of the figures.

Effect of unstarting the inlet, $M_{\infty} = 3.0 - 1.55$, $\alpha = 0^{\circ}$. Figures 28 through 30 show results obtained when the inlet is unstarted. Figure 28 shows the changes in total-pressure recovery, total-pressure distortion at the engine face, and bleed mass-flow ratio. Figures 29 and 30 show changes in the individual bleed zone mass flows and plenum pressure recoveries, respectively. The unfilled symbols are maximum pressure recovery points obtained from figures 10, 15, and 16. At Mach number 1.75 and below the inlet could be restarted without alteration of the inlet geometry.

Sensitivity to angle of attack, $M_{\infty} = 3.00$. Figure 31 shows the effect of supercritical inlet operation on the angle of attack that the inlet will tolerate without unstarting. The curves show the supercritical performance data at 0° angle of attack from figure 10(b). To aid in the understanding of these curves the following explanation of the curve for bleed-exit setting A is made. With the inlet operating initially at 0° angle of attack and maximum pressure recovery, the angle of attack can be changed to about 0.5° without unstarting the inlet as shown on the curve. If the total-pressure recovery at 0° angle of attack is reduced about 1 percent by withdrawing the terminal shock wave system downstream, the angle of attack can be changed to about 1.10 before the inlet unstarts. If the total-pressure recovery is decreased further, the angle of attack can be increased from 00 to a limiting value of 2.90 without unstarting the inlet. At this point reducing the total-pressure recovery further will not alter the angle of attack that the inlet will tolerate without unstarting. Similar results were obtained for bleed-exit settings B and C except that the limiting angle of attack was 2.75°.

Transonic Performance

Performance, $M_{\infty} = 0.6$ - 1.3, $\alpha = 0^{\circ}$. Figure 32 presents total-pressure recovery, total-pressure distortion at the engine face, and additive drag for the transonic Mach number range. The data presented are for the bleed exits fixed in the open position. No attempt was made to determine the mass flow passing through the bleed zones. The most retracted cowl lip position was $(x/R)_{\text{lip}} = 3.952$, which coincided with the station of the maximum centerbody

diameter. Data are presented for two other lip positions forward of this station. Some data were obtained with the bleed exits closed but they are not presented herein since they generally showed lower values of total-pressure recovery and higher values of distortion at the engine face.

Performance at angle of attack, $M_{\infty}=0.6-1.0$. Engine-face total-pressure recovery and total-pressure distortion are presented in figure 33. Results are shown for angles of attack from 0° to 8° . The 0° data are the filled symbols of figure 32 and the data for nonzero angle of attack were obtained by pitching the model with the 0° geometry settings. No attempt was made to measure additive drag with the inlet at nonzero angle of attack.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 19, 1968
720-03-01-01-00-21

REFERENCES

- 1. Sorensen, Norman E.; and Smeltzer, Donald B.: Study and Development of an Axisymmetric Supersonic Inlet. Presented at AIAA Propulsion Joint Specialist Conference, Colorado Springs, Colorado, June 14-17, 1965.
- 2. Sorensen, Norman E.; Anderson, Warren E.; Wong, Norman D.; and Smeltzer, Donald B.: Performance Summary of a Two-Dimensional and an Axisymmetric Supersonic Inlet System. NASA TM X-1302, 1966.
- 3. Sorensen, Norman E.; and Smeltzer, Donald B.: Investigation of a Large-Scale Mixed Compression Axisymmetric Inlet System Capable of High Performance at Mach Number 0.6 to 3.0. NASA TM X-1507, 1968.
- 4. Sorensen, Virginia L.: Computer Program for Calculating Flow Fields in Supersonic Inlets. NASA TN D-2897, 1965.
- 5. Kuehn, Donald M.: Experimental Investigation of the Pressure Rise Required for the Incipient Separation of Turbulent Boundary Layers in Two-Dimensional Supersonic Flow. NASA MEMO 1-21-59A, 1959.
- 6. Strike, W. T.; and Rippy, J.: Influence of Suction on the Interaction of an Oblique Shock With a Turbulent Boundary Layer at Mach Number 3. AEDC-TN-61-129, October 1961.
- 7. Taylor, H. D.: Summary Report on Vortex Generators. UAC Research Department Report R-05280-9, March 7, 1950.
- 8. Sibulkin, Merwin: Theoretical and Experimental Investigation of Additive Drag. NACA Rep. 1187, 1954.

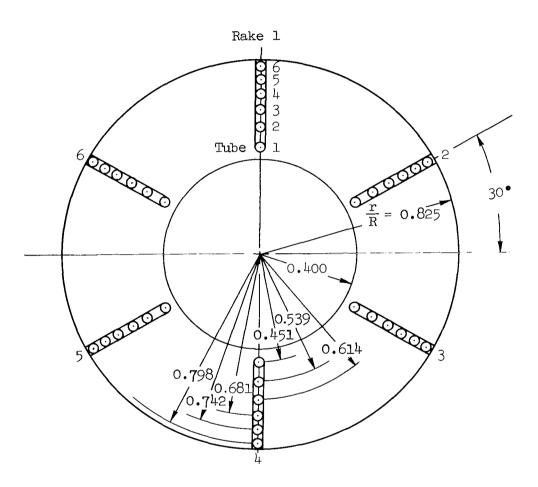
TABLE I.- INLET COORDINATES

CENTERBODY

R	R
0	0
Straight	taper
1.502	•265
1.600	.282
1.800	.320
2.000	•359
2.200	•400
2.400	•442
2.600	.487
2.800	• 534
3.000	• 582
3.200	.632
3.400	.684
3.500	.710
3.550	•723
3 • 5 7 5	• 7 29
3.600	• 7 35
3.625	.740
3.650	.7 46
3.675	•751
3.700	.756
3 .7 25	.760
3 .7 50	.764
3 •77 5	.768
3.800	.771

R	r R
3.825	• 7 7 ¹ 4
3.850	.776
3.875	•778
3.900	• 7 79
3.925	.780
3.952	.7802
3•9 7 5	.780
4.000	•778
4.022	.776
Straigh	t taper
4.252	• 7 38
4.300	•730
4.400	•709
4.500	•688
4.600	.666
4.700	•643
4.800	.616
4.900	•585
5.000	• 545
5.100	.498
5.150	.471
5.200	.442
5•250	•420
5.300	•405
5•352	•400
Straight	line

Straight line


COWL

$\left(\frac{x}{R}\right)_{C}$	r R
0	1.000
Straight	line
• 2 7 45	1.000
.350	1.000
•450	•999
. 550	•997
.650	•995
.750	.991
.850	•986
•950	•976
1.050	•970
1.152	•960
Straight	taper
2.5245	•791
2.5 7 5	۰787
2.625	•787
2.6 7 5	• 7 93
2. 7 25	.808
2.775	.820
2.8245	.825
Straight	line

-Engine-face rakes

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, pt2/pto

The following include total pressure recoveries from the individual tubes mounted at the engine face. Other quantities of interest are also included. The sketch below shows location of each tube.

Engine-face pressure tube location looking downstream

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t}}_{\rm 2}/{\rm p_{t_{\infty}}}$ - Continued

$M_{\infty} =$	3.2	.0	α =		0.0°	m _o /	′m _∞ =	1.00	00 I	Exit se	etting	=	Α
\bar{p}_{t_2}	/p _{t∞} =).799	^m bl	$/m_{\infty} =$	0.085	<u>δ</u> ΔΙ)t ₂ =	0.14	7	_ _	p ₂ /p _c	_∞ =	36.7
3 5	1 0.804 0. 0.830 0. 0.840 0.	788 0 838 0 840 0	3 0.773 0.779 0.837	0.743 0.832 0.834	5 0.734 0.807 0.823	6 0.736 0.753 0.771	2 4 6	1 0.852 0.796 0.850	0.836 0.783 0.829	0.842 0.769 0.832	4 0.833 0.772 0.837	0.772 0.751 0.802	0.742 0.756
₽̃t2/	$/p_{t_{\infty}} = 0.$	780	m _b]	$_{\rm L}/{\rm m}_{\infty} =$	0.078	3 ∆r)t2 =	_ 0.15	5	· -··	. p ₂ /p ₆	∞ = <u> </u>	36.0
RAKE NO.	1 0.791 0.	2	i	4_	i			1		3	4		
3	0.816 0.	824	0.766	0.817	0.788	0.743	4	0.774	0.770	0.764	0.750	0.733	0.728
5	0.821 0.	92210	0.85.0	0.807	0.806	0.759	6	TO-839	0.879	[0.818]	0.814	10.774	0.732
$M_{\infty} =$	3.2	20	α =		0.0°	m _o /	$m_{\infty} =$	1.00	00	Exit s	etting	=	_
	3.2 /p _{t_{oo} = _0					_							Α
RAKE NO.	$p_{t_{\infty}} = 0$ 1 0.746 0. 0.782 0. 0.808 0.	.764 2 766 (789 (806 (TUBE 3 0.796 0.702 0.816	$1/m_{\infty} = 1$ NO. 4 0.820 0.799 0.787	0.068 5 0.814 0.779 0.767	6 0.760 0.735 0.730	RAKE NO. 2 4	0.172 1 0.793 0.740 0.745	2 0.812 0.716 0.759	TUBE 3 0.798 0.699 0.780	P ₂ /P ₀ NO. 4 0.766 0.691 0.809	5 0.726 0.688 0.800	35.8 6 0.704 0.694
$ \begin{array}{c} \bar{P}_{t2} \\ RAKE \\ NO. \end{array} $ $ \begin{array}{c} 1 \\ 3 \\ 5 \end{array} $ $ M_{\infty} = \frac{1}{1} \\ $	$p_{t_{\infty}} = 0$ 0.746 0.782 0.808 $0.3.2$.764 2 766 789 806	TUBE 3 0.796 0.702 0.816 $\alpha =$	$1/m_{\infty} = \frac{1}{100}$ NO. 14 0.820 0.799 0.787	5 0.814 0.779 0.767	6 0.760 0.735 0.730 m _o /	RAKE NO. 2 4	0.172 1 0.793 0.740 0.745	2 0.812 0.716 0.759	TUBE 3 0.798 0.699 0.780	P ₂ /P ₀ NO. 4 0.766 0.691 0.809	5 0.726 0.688 0.800	35.8 6 0.704 0.694
$ \begin{array}{c} \bar{P}_{t2} \\ RAKE \\ NO. \end{array} $ $ \begin{array}{c} 1 \\ 3 \\ 5 \end{array} $ $ M_{\infty} = \frac{1}{1} \\ $	$p_{t_{\infty}} = 0$ 1 0.746 0. 0.782 0. 0.808 0.	.764 2 766 789 806	TUBE 3 0.796 0.702 0.816 $\alpha =$	$1/m_{\infty} = \frac{1}{100}$ NO. 14 0.820 0.799 0.787	5 0.814 0.779 0.767	6 0.760 0.735 0.730 m _o /	RAKE NO. $2 $ $4 $ $6 $	0.172 1 0.793 0.740 0.745	2 0.812 0.716 0.759	TUBE 3 0.798 0.699 0.780	P ₂ /P ₆ NO. 4 0.766 0.691 0.809 etting	5 0.726 0.688 0.800	35.8 6 0.704 0.694 0.760
$ \begin{array}{c} \bar{P}_{t2} \\ RAKE \\ NO. \end{array} $ $ \begin{array}{c} 1 \\ 3 \\ 5 \end{array} $ $ M_{\infty} = \frac{1}{1} \\ $	$p_{t_{\infty}} = 0$ 1 0.746 0.782 0.808 3.2 $p_{t_{\infty}} = 0$.764 2 766 789 806	TUBE 3 0.796 0.702 0.816 $\alpha =$	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	5 0.814 0.779 0.767	6 0.760 0.735 0.730 m _o /	RAKE NO. $2 $ $4 $ $6 $	0.172 1 0.793 0.740 0.745 1.00	2 0.812 0.716 0.759	TUBE 3 0.798 0.699 0.780	P ₂ /P ₀ NO. 4 0.766 0.691 0.809 etting P ₂ /P ₀	5 0.726 0.688 0.800	35.8 6 0.704 0.694 0.760
\bar{P}_{t2} RAKE NO. 1 3 5 $M_{\infty} = \bar{P}_{t2}$ RAKE NO. 1 3	$p_{t_{\infty}} = 0$ 1 0.746 0.782 0.808 3.2 $p_{t_{\infty}} = 0$.764 2 766 806 0 .816 2 768 759	TUBE 3 0.796 0.702 0.816 α = TUBE 3 0.807 0.826	$1/m_{\infty} =$ NO. 4 0.820 0.787 $1/m_{\infty} =$ NO. 4 0.829 0.8344	5 0.814 0.779 0.767 0.0° 5 0.851 0.862	6 0.760 0.735 0.730	RAKE NO. $ \begin{array}{c} \text{RAKE} \\ \text{NO.} \end{array} $ $ \begin{array}{c} \text{Mo.} \end{array} $ $ \begin{array}{c} \text{Constant } Cons$	0.172 1 0.793 0.740 0.745 1.00	2 0.812 0.759 00 1 0.775 0.775 0.781	TUBE 3 0.798 0.699 0.780 Exit so TUBE 3 0.799 0.821	P ₂ /P ₀ NO. 4 0.766 0.691 0.809 etting P ₂ /P ₀ NO. 4 0.820 0.854	5 0.726 0.688 0.800 = 5 0.846 0.863	35.8 6 0.704 0.694 0.760 B 38.9 6 0.882 0.886

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t}}_{\rm 2}/{\rm p_{t_{\infty}}}$ - Continued

M _∞ =		3.20	α =		0.0°	m _o ,	/m _∞ =	1.0	000	Exit s	etting	=	В
\bar{p}_{t_2}	$p_{t_{\infty}} =$	0.79	<u>7</u> ^m b:	$_1/m_\infty =$	0.07	<u>'7</u> Δ ₁	p _{t2} =	0.1	34		p ₂ /p ₀	_∞ =	36.2
RAKE			TUBE	NO.			RAKE			TUBE	NO.	<i>-</i>	
NO.	1	2	3	4	5	6	NO.	1	2	3	14	5	6
1	0.799	0.769	0.792	0.828	0.827	0.790	2	0.786	0.813	0.831	0.826	0.829	0.819
3	0.776	0.804	0.845	0.826	0.811	0.788	4	0.750	0.806	0.799	0.809	0.804	0.778
5	0.739	0.745	0.761	0.769	0.785	0.801	6	0.755	0.784	0.797	0.807	0.819	0.834
$M_{\infty} =$		3.20	_ α =		0.0°	m _o /	$m_{\infty} = 1$	1.0	000	Exit s	etting	=	
<u>P</u> t≥	/p _t =	0.76	5_ m _b :	$_{\mathrm{l}}/\mathrm{m}_{\infty} =$	0.00	<u>62</u> _ ∆1	o _{t2} =	0.1	76		p ₂ /p	» =	36.0
RAKE	η							1					· ₁
NO.	1.	2	3	14	5	6	NO.	1	2	3	4	5	6
1	0.738	0.756	0.795	0.828	0.825	0.776	2	0.805	0.822	0.809	0.763	0.720	0.704
3	0.789	0.806	0.703	0.798	0.785	0.743	4	0.740	0.708	0.697	0.694	0.693	0.693
5	0.806	0.808	0.818	0.786	0.765	0.725	6	0.763	0.772	0.792	0.807	0.796	0.753
Μ _∞ =					0.0°	m _o /	$m_{\infty} = 1$	1.0	0001	Exit s	etting	=	C
	/p _{t_∞} =	3.20	α =										
		3.20	α = 26 ^m b	l/m _∞ =	0.0	73_ ^Δ Ι)t ₂ = _	0.19	93		p ₂ /p ₀	x =	37.5
$ar{p}_{ ext{t}_2}$	/p _t =	3.20	α = 26 ^m b	l/m _∞ =	0.0	73_ ^Δ Ι)t ₂ = _		93		p ₂ /p ₀	x =	37.5
P _{t2}	/p _t _∞ =	3.20 	α = 26 ^m b TUBE	$1/m_{\infty} = \frac{1}{NO}$	0.0	73_ ^Δ I	Pt ₂ = RAKE	0.19	2	TUBE:	P ₂ /P ₀	» =	37.5
p _{t2}	/p _t =	3.20 0.79 2 0.737	$\alpha = \frac{\alpha}{26}$ TUBE $\frac{1}{3}$ 0.790	$\frac{1}{m_{\infty}} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{4}$ 0.827		73_ ^Δ I	Pt ₂ = RAKE NO.	0.19	2 0.734	TUBE: 3	p/p, NO. 4 0.803	5 0.833	37.5 6 0.864
Pt2 RAKE NO.	/p _t _∞ =	3.20 0.79 2 0.737 0.749	$\alpha = \frac{1}{26} \frac{m_b}{m_b}$ TUBE 0.790 0.800	$1/m_{\infty} = \frac{1}{100}$ NO. 4 0.827	5 0.839 0.845	73^I 6 0.856 0.866	Pt ₂ = RAKE NO.	0.19 1 0.728 0.726	2 0.734 0.756	TUBE: 3 0.756	P ₂ /P ₃ NO. 4 0.803 0.843	5 0.833 0.841	37.5 6 0.864 0.852
Pt ₂ RAKE NO. 1 3 5	/p _t =	3.20 	$\alpha = \frac{26}{100}$ TUBE $\frac{3}{0.790}$ 0.800 0.780	$1/m_{\infty} = \frac{1}{1/m_{\infty}}$ NO. 4 0.827 0.821 0.798	5 0.839 0.845 0.830	6 0.856 0.866 0.862	RAKE NO. 2	0.19 1 0.728 0.726 0.731	2 0.734 0.756 0.762	TUBE: 3 0.756 0.802 0.790	P ₂ /P ₀ NO. 4 0.803 0.843 0.817	5 0.833 0.841 0.842	6 0.864 0.852 0.875
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} =$	/pt _w = 1 0.721 0.731 0.722	3.20 0.79 2 0.737 0.749 0.742 3.20	$\alpha = \frac{1}{26}$ mb TUBE 3 0.790 0.800 0.780 $\alpha = \frac{1}{2}$	$n/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 4 0.827 0.821 0.798	5 0.839 0.845 0.830 0.0°	6 0.856 0.866 0.862	$\begin{array}{c} \text{Pt}_2 = \\ \text{RAKE} \\ \text{NO.} \\ 2 \\ 4 \\ 6 \\ \text{/m}_{\infty} = \end{array}$	0.19 1 0.728 0.726 0.731	2 0.734 0.756 0.762	TUBE: 3 0.756 0.802 0.790	P ₂ /P ₀ NO. 4 0.803 0.843 0.817	5 0.833 0.841 0.842	6 0.864 0.852 0.875
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$	/pt _w = 1 0.721 0.731 0.722	3.20 0.79 2 0.737 0.749 0.742 3.20	$\alpha = \frac{1}{26}$ mb TUBE 3 0.790 0.800 0.780 $\alpha = \frac{1}{2}$	$1/m_{\infty} = \frac{1}{1/m_{\infty}}$ NO. 4 0.827 0.821 0.798	5 0.839 0.845 0.830 0.0°	6 0.856 0.866 0.862	$Pt_{2} = $ $RAKE NO.$ 2 4 6 $m_{\infty} = $ $t_{2} = $	0.19 1 0.728 0.726 0.731	2 0.734 0.756 0.762	TUBE: 3 0.756 0.802 0.790	P ₂ /P ₀ NO. 4 0.803 0.843 0.817 etting P ₂ /P ₀	5 0.833 0.841 0.842	6 0.864 0.852 0.875
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} =$	/pt _w = 1 0.721 0.731 0.722	3.20 0.79 2 0.737 0.749 0.742 3.20	$\alpha = \frac{26}{100}$ TUBE $\frac{3}{0.790}$ 0.800 0.780 $\alpha = \frac{100}{100}$	$1/m_{\infty} = \frac{1}{1/m_{\infty}}$ NO. 4 0.827 0.821 0.798	5 0.839 0.845 0.830 0.0°	6 0.856 0.866 0.862	$\begin{array}{c} \text{Pt}_2 = \\ \text{RAKE} \\ \text{NO.} \\ 2 \\ 4 \\ 6 \\ \text{/m}_{\infty} = \end{array}$	0.19 1 0.728 0.726 0.731	2 0.734 0.756 0.762	TUBE: 3 0.756 0.802 0.790 Exit se	P ₂ /P ₀ NO. 4 0.803 0.843 0.817 etting P ₂ /P ₀	5 0.833 0.841 0.842	6 0.864 0.852 0.875
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE	/pt _w = 1 0.721 0.731 0.722 /pt _w =	3.20 0.79 2 0.737 0.749 0.742 3.20 0.772	$\alpha = \frac{26}{100}$ TUBE 3 0.790 0.800 0.780 $\alpha = \frac{100}{100}$ TUBE 3	$1/m_{\infty} = \frac{1}{1/m_{\infty}} = $	5 0.839 0.845 0.830 0.0° 0.058	6 0.856 0.862 m _o /	$Pt_{2} = $ $RAKE NO.$ 2 4 6 $m_{\infty} = $ $Pt_{2} = $ $RAKE NO.$	0.19 1 0.728 0.726 0.731 1.0	2 0.734 0.756 0.762 000 F	TUBE: 3 0.756 0.802 0.790 Exit se	P ₂ /P ₀ NO. 4 0.803 0.843 0.817 etting P ₂ /P ₀ NO.	5 0.833 0.841 0.842	6 0.864 0.852 0.875 c 36.6
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO. 1	/pt _w = 1 0.721 0.731 0.722 /pt _w =	3.20 0.70 2 0.737 0.749 0.742 3.20 0.772	$\alpha = \frac{26}{100}$ TUBE 3 0.790 0.800 0.780 $\alpha = \frac{100}{100}$ TUBE 3 0.782	$1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 4 0.827 0.821 0.798 $1/m_{\infty} = \frac{1}{m_{\infty}}$ NO. 4 0.819	0.0° 0.839 0.845 0.830 0.0° 0.058	6 0.856 0.866 0.862m_o/	$Pt_{2} = $ $RAKE$ $NO.$ 2 4 6 $m_{\infty} = $ $Pt_{2} = $ $RAKE$ $NO.$ 2	0.19 1 0.728 0.726 0.731 1.0 0.17	2 0.734 0.756 0.762 000 F	TUBE: 3 0.756 0.802 0.790 Exit se	P ₂ /P ₀ NO. 4 0.803 0.843 0.817 etting P ₂ /P ₀ NO. 4 0.809	0.833 0.841 0.842 = - 5 0.787	37.5 6 0.864 0.852 0.875 C 36.6
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO.	/pt _w = 1 0.721 0.731 0.722 /pt _w = 1 0.734 0.783	3.20 	$\alpha = \frac{26}{1000}$ TUBF: 3 0.790 0.800 0.780 $\alpha = \frac{1000}{1000}$ TUBE 3 0.782 0.704	$1/m_{\infty} = \frac{1}{100}$ NO. 4 0.827 0.821 0.798 1/m_{\infty} = \frac{1}{100} NO. 4 0.819 0.788	5 0.839 0.845 0.830 0.0° 0.058 5 0.833 0.774	6 0.856 0.862 m _o /	Pt ₂ = RAKE NO. 2 4 6 m_{∞} = RAKE NO. 2	0.19 1 0.728 0.726 0.731 1.0	2 0.734 0.756 0.762 000 F	TUBE: 3 0.756 0.802 0.790 Exit se	P ₂ /P ₀ NO. 4 0.803 0.843 0.817 etting P ₂ /P ₀ NO. 4 0.809 0.698	5 0.833 0.841 0.842 = 5 0.787 0.697	37.5 6 0.864 0.875 C 36.6 6 0.742 0.699

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, p_{t_2}/p_{t_∞} - Continued

$M_{\infty} =$		3.00	_ α =		0.0	m _o /	$m_{\infty} =$	0.997	· I	Exit se	etting	=	A
$\overline{\mathtt{p}}_{t_{\mathcal{Z}'}}$	$/p_{t_{\infty}} =$	0.931	∔ mb2	$_{\rm L}/{\rm m}_{\infty} =$	0.123	<u>Δ</u>	o _{te} =	0.098	3		p ₂ /p ₀	» =	32.1_
RAKE NO.			TUBE		5	6	RAKE NO.		2	TUBE		5	6
1 1	0.886	0.928	0.912	0.946	0.950	0.929	2	0.878	0.943	0.949	0.952	0.948	0.959
3	0.895	0.925	0.970	0.942	0.940	0.940	4	0.914	0.951	0.969	0.939	0.934	0.903
5	0.919	0.922	0.926	0.959	0.961	0.943	6	0.906	0.924	0.902	0.952	0.960	0.928
$M_{\infty} =$		3.00	_ α =		0.0	m _o /	$m_{\infty} = 1$	0.99	I	Exit s	etting	= .	_A
Pt2	$/p_{t_{\infty}} =$	0.913	m _b :	$_{ m l}/{ m m}_{\infty} =$	0.103	3 ∆r	o _{tz} =	0.090)		p ₂ /p ₀	_∞ =	31.3
RAKE			TUBE	NO.		l	RAKE			TUBE	NO.		
NO.	l	2	3	4	5	6	NO.		2	3	7‡	5	6
1	0.864	0.894	0.884	0.924	0.924	0.930	2	0.863	0.923	0.916	0.927	0.928	0.937
3	0.882	0.910	0.945	0.924	0.921	0.924	4	0.907	0.927	0.944	0.921	0.914	0.919
5	0.881	0.897	0.898	0.935	0.926	0.941	6	0.889	0.895	0.878	0.927	0.926	0.936
•		-											
								0.997				=	
$M_{\infty} =$	3	3.00_	<u>α</u> =		0.0°	m _o /	$m_{\infty} =$	0.997 0.100	<u> </u>	Exit s	etting		<u>A</u>
$M_{\infty} =$	/p _t _ =	0.880	$\alpha = \frac{\alpha}{2}$	l/m _∞ =	0.0° 0.085	m _o /	$m_{\infty} = 0$	0.100]	Exit so	etting		<u>A</u>
$M_{\infty} = \bar{p}_{t_{2'}}$	/p _t =	0.880	<u>α</u> =	$_{1}/m_{\infty} =$	0.0°	m _o /	$m_{\infty} = $ $p_{t_2} = $ RAKE	0.100	· 1	Exit so	p ₂ /p ₀	x = .	<u>A</u>
$M_{\infty} = \bar{p}_{t,2}$ RAKE NO.	/p _t =	0.880	$\alpha = \frac{\alpha}{1000}$ TUBE	$1/m_{\infty} =$ NO. 4	0.0° 0.085	m _o /	$m_{\infty} = 0$ $t_{2} = 0$ RAKE	0.100	2	Exit so TUBE	p ₂ /p ₀	x = .	A29.7
$M_{\infty} = \overline{p}_{t,2}$ RAKE NO.	/p _{t_∞} =	0.88c 0.83c 0.832	$\alpha = \frac{\alpha}{1000}$ TUBE 3 0.863	$1/m_{\infty} = 1$ NO. 4 0.886 0.877	0.0° 0.085 5 0.891 0.880	m _{o/} 5^I 6 0.910 0.887	$m_{\infty} =$ $p_{t_2} =$ p_{t_2	0.100 1 0.874 0.877	2 0.864 0.893	TUBE 3 0.870 0.919	P ₂ /P ₀ NO. 4 0.876 0.889	5 0.8 <u>75</u> 0.885	29.7 6 0.893 0.911
$M_{\infty} = \overline{p}_{t,2}$ RAKE NO.	/p _{t_∞} =	0.88c 0.83c 0.832	$\alpha = \frac{\alpha}{1000}$ TUBE 3 0.863	$1/m_{\infty} = 1$ NO. 4 0.886 0.877	0.0° 0.085 5 0.891 0.880	m _{o/} 5^I 6 0.910 0.887	$m_{\infty} =$ $p_{t_2} =$ p_{t_2	0.100 1 0.874 0.877	2 0.864 0.893	TUBE 3 0.870 0.919	P ₂ /P ₀ NO. 4 0.876 0.889	5 0.8 <u>75</u> 0.885	29.7 6 0.893
$M_{\infty} = \bar{p}_{t,2}$ RAKE NO.	/p _t = 1 0.831 0.897 0.862	0.880 0.880 2 0.832 0.884 0.859	$\alpha = \frac{\alpha}{1000}$ TUBE 3 0.863 0.919 0.872	no. 1/m _∞ = No. 14 0.886 0.877 0.897	0.0° 0.085 5 0.891 0.880 0.896	m _{o/} 5△r 6 0.910 0.887 0.889	$m_{\infty} =$ $p_{t_2} =$ $m_{\infty} =$ $m_{\infty} =$ $m_{\infty} =$ $m_{\infty} =$ $m_{\infty} =$ $m_{\infty} =$	0.100 1 0.874 0.877	2 0.864 0.893 0.838	TUBE 3 0.870 0.919 0.845	p ₂ /p ₀ NO. 4 0.876 0.889 0.893	5 0.875 0.885 0.905	29.7 6 0.893 0.911 0.885
$M_{\infty} = \overline{p}_{t,2}$ $\begin{bmatrix} RAKE \\ NO. \end{bmatrix}$ 1 3 5 $M_{\infty} = \overline{q}_{t,2}$	/p _t = 1 0.831 0.897 0.862	2 0.832 0.884 0.859	$\alpha = \frac{\alpha}{1000}$ TUBE 3 0.863 0.919 0.872	NO. 4 0.886 0.877 0.897	0.0° 0.085 5 0.891 0.880 0.896 0.0°	6 0.910 0.887 0.889	$m_{\infty} =$ $p_{t_2} =$ $m_{\infty} =$ $m_{\infty} =$	0.100 1 0.874 0.877 0.865	2 0.864 0.893 0.838	TUBE 3 0.870 0.919 0.845	P ₂ /P ₀ NO. 4 0.876 0.889 0.893 etting	5 0.875 0.885 0.905	A 29.7 6 0.893 0.911 0.885 B
$M_{\infty} = \bar{p}_{t,2}$ RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$	p _t = 1 0.831 0.897 0.862 / p _t =	2 0.832 0.884 0.859 3.00 0.926	TUBE 3 0.863 0.919 0.872 α = 0 mb TUBE	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.0° 0.085 5 0.891 0.880 0.896 0.0°	6 0.910 0.887 0.889	$m_{\infty} =$ $p_{t_2} =$ $p_{t_2} =$ $p_{t_2} =$ $p_{t_2} =$ $p_{t_2} =$	0.100 1 0.874 0.877 0.865 0.99°	2 0.864 0.893 0.838	TUBE 3 0.870 0.919 0.845 Exit so	P ₂ /P ₀ NO. 0.876 0.889 0.893 etting P ₂ /P ₀ NO.	5 0.875 0.885 0.905 =	A 29.7 6 0.893 0.911 0.885 B 31.5
$M_{\infty} = \overline{p}_{t,2}$ $RAKE NO.$ $1 3 5$ $M_{\infty} = \overline{p}_{t,2}$ $RAKE NO.$	/p _t = 1 0.831 0.897 0.862 /p _t = 1	2 0.832 0.884 0.859 3.00 0.926	$\alpha = \frac{\alpha}{1000}$ TUBE 3 0.863 0.919 0.872 $\alpha = \frac{\alpha}{1000}$ TUBE 3	$1/m_{\infty} =$ NO. 4 0.886 0.877 0.897 1/ $m_{\infty} =$ NO. 4	0.0° 0.085 5 0.891 0.880 0.896 0.0°	6 0.910 0.887 0.889	$m_{\infty} =$ RAKE NO. 2 4 6 $m_{\infty} =$ $\text{Pt}_{2} =$ RAKE NO.	0.100 1 0.874 0.877 0.865 0.99°	2 0.864 0.893 0.838 7	TUBE 3 0.870 0.919 0.845 Exit so	P ₂ /P ₀ NO. 4 0.876 0.889 0.893 etting P ₂ /P ₀ NO.	5 0.875 0.885 0.905 =	A 29.7 6 0.893 0.911 0.885 B 31.5
$M_{\infty} = \overline{p}_{t,2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t,2}$ RAKE NO.	/p _t = 1 0.831 /p _t = 1 0.881	2 0.832 0.884 0.859 3.00 0.920 2	TUBE 3 0.863 0.919 0.872 α = 0 mb TUBE 3 0.897	$1/m_{\infty} = 1/m_{\infty} = 1/m_$	0.0° 0.085 5 0.891 0.880 0.896 0.0° 0.108	6 0.910 0.887 0.889 mo/ 3 ^1	$m_{\infty} =$ $RAKE$ $NO.$ 2 4 6 $m_{\infty} =$ $Pt_{2} =$ $RAKE$ $NO.$	0.100 1 0.874 0.865 0.99° 0.106	2 0.864 0.893 0.838 7 2 0.929	TUBE 3 0.870 0.919 0.845 Exit so TUBE 3 0.915	etting P_{2}/P_{0} NO. 0.876 0.889 0.893 etting P_{2}/P_{0} NO. 4 0.943	5 0.875 0.885 0.905 = 5 0.939	A 29.7 6 0.893 0.911 0.885 B 31.5 6 0.947
$M_{\infty} = \overline{p}_{t,2}$ $RAKE NO.$ $1 3 5$ $M_{\infty} = \overline{p}_{t,2}$ $RAKE NO.$	/pt _w = 1 0.831 0.897 0.862 /pt _w = 1 0.881 0.891	2 0.832 0.884 0.859 0.926	TUBE 3 0.863 0.919 0.872 α = 0 mb TUBE 3 0.8974	$1/m_{\infty} =$ NO. 4 0.886 0.877 0.897 1/ $m_{\infty} =$ NO. 4 0.939 0.939	0.0° 0.085 5 0.891 0.880 0.896 0.0° 5 0.939 0.935	6 0.910 0.887 0.889	$m_{\infty} =$ $p_{t_2} =$ p_{t_2	0.100 1 0.874 0.865 0.99° 0.106 1 0.856 0.897	2 0.864 0.893 0.838 7 2 0.929 0.930	TUBE 3 0.870 0.919 0.845 Exit so TUBE 3 0.915	P ₂ /P ₀ NO. 4 0.876 0.889 0.893 etting P ₂ /P ₀ NO. 4 0.943 0.937	5 0.875 0.885 0.905 = 5 0.939 0.926	A 29.7 6 0.893 0.911 0.885 B 31.5 6 0.947

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

M _∞ =	:	3.00	_ α =		0.0	m _o	/m _∞ =	0.99	97	Exit s	etting	=	В
$\overline{\mathtt{p}}_{t_{\mathcal{Z}}}$	$p_{t_{\infty}} =$	0.92	22 ^m b	1/m _∞ =	0.09	<u> </u>	p _{t2} =	0.09	96		p ₂ /p ₀	∞ =	31.5
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.		2	3	4	5	6
1	0.870	0.894	0.895	0.936	0.937	0.934	2	0.869	0.933	0.917	0.942	0.934	0.953
3	0.903	0.923	0.957	0.935	0.934	0.930	4	0.889	0.930	0.955	0.941	0.928	0.927
5	0.879	0.903	0.902	0.948	0.948	0.937	6	0.877	0.906	0.888	0.944	0.950	0.929
								0.97	7	Exit s	etting	=	В
Pt2	$/p_{t_{\infty}} =$	0.909	b.	1/∞ -	0.000		Pt2	0.09			- ^P 2 ^{/ P} o	×	30.9
RAKE			TUBE	NO.			RAKE			TUBE	NO.		,
NO.	1	2	3	4	5_	6	NO.	1	2	3	4	5	6
1	0.858	0.881	0.876	0.923	0.925	0.933	2	0.878	0.917	0.896	0.924	0.918	0.923
3	0.915	0.910	0.946	0.921	0.919	0.904	4	0.888	0.918	0.942	0.926	0.914	0.933
5	0.872	0.888	0.883	0.933	0.931	0.925	6	0.873	0.886	0.869	0.926	0.932	0.921
M _{oo} =		3.00	α =		0.0	m _O	$/m_{\infty} =$	0.997	<u>, </u>	Exit s	etting	=	В
p_{t_2}	$/p_{t_{\infty}} =$	0.872	m _b	1/m _∞ =	0.076	— <u>Δ</u>	p _{t2} = .	0.137	<u></u>		_ p ₂ /p _o	° =	29.6
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5.	6
1	0.824	0.817	0.825	0.873	0.877	0.936	2	0.844	0.849	0.838	0.875	0.878	0.922
3	0.862	0.867	0.903	0.889	0.885	0.919	4	0.864	0.874	0.901	0.883	0.876	0.934
5	0.852	0.838	0.844	0.881	0.889	0.910	6	0.852	0.824	0.820	0.873	0.891	0.913
M _∞ =		3.00	_ α =		0.0°	m _o ,	/m _∞ = _	0.99	71	Exit s	etting	=	C
ē _{t≥′}	$/p_{t_{\infty}} =$	0.90	l m _b]	$_{\rm L}/{\rm m}_{\infty} =$	0.08	<u>+</u> Δ ₁	p _{t2} = _	0.13	<u>L</u>		p ₂ /p _o	。= <u> </u>	
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2		4	5	6
1	-	===		0.921	0.920		2				0.918	i	
3	_	0.913					1				0.924	-· · · †	
	1600000	O • 7 J. 11	0.740	0.7241	O • 7 + 1	V • 9091	(4 (0.0101	0.7171	0.7421	0.75	0.2101	0.712

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_{\infty}}}$ - Continued

M _∞ =	3	.00	_ α =		0.0	_ m _o /	′m _∞ =	0.997]	Exit s	etting	=	С
ī _{tz}	$/p_{t_{\infty}} =$	0.903	m _b :	$_{\rm L}/{\rm m}_{\infty} =$	0.075	\	o _{t2} =	0.108			p ₂ /p	_∞ = _	30.6
RAKE NO.] 	ا م	TUBE	NO.	5	6	RAKE NO.	1	ا ،	TUBE	NO.		
1	îi	i	î	Ī	ī	i i	ŧ .	Ñ	i	i	-	ĭ	0.922
	"	1	1		1		i	ii .	ī		_		0.922
6 1	n 1	i	1	ı	í	t î	ì	ii	ī	i	. –		3 0.909
								0.997					
ē _{t≥′}	$/p_{t_{\infty}} =$	0.879	m _b _	$L/m_{\infty} =$	0.068	—— ^Δ I	t ₂ =	0.126			. p ₂ /p	ω =	29.6
RAKE			TUBE	NO.			RAKE		-	TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2	3	4	5	6
1	0.830	0.822	0.835	0.878	0.886	0.932	2	0.857	0.862	0.851	0.877	0.876	6 0.933
3	0.887	0.878	0.913	0.887	0.885	0.917	4	0.874	0.884	0.909	0.892	0.887	0.932
5	0.838	0.854	0.849	0.898	0.895	0.911	6	0.854	0.835	0.827	0.889	0.898	0.912
$M_{\infty} =$	2	.90	<u></u> α =		0.0°	m _o /	$m_{\infty} =$	0.977		Exit s	etting	=	Α
₽+	/p ₊ =	v 003	m _b -		0 101	Δτ)+ _ =	0.170			n /p	=	27 0
f 8	ri .							П				·	
RAKE	<u> </u>		TUBE 3	NO.			RAKE		1	TUBE	NO.	1	
NO.	i i		i i		ĺ	i i		1	i	ĺ		i	
	17 1		ì ,	1	i) ii		11	ī	i	i –	i – –	0.951
			1 7	:		1 1		0.813	ī	•			
5	0.824	0.924	0.918	0.942	0.942	0.947	6	0.825	0.887	0.875	0.927	0.946	0.950
$M_{\infty} =$	2.	90	_ α =		0.0	m _o /	$m_{\infty} =$	0.977		Exit s	etting	=	Α
₽ _{t2}	$/p_{t_{\infty}}$ =	0.892	m _b	$_{\rm L}/{\rm m}_{\infty} =$	0.108	^I	ote =	0.182			p ₂ /p	_∞ =	26.6
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.] 1	2	3	4	5	6
1	0.809	0.833	0.833	0.869	0.938	0.959	2	0.867	0.885	0.870	0.927	0.931	0.952
3	0.870					: ::	4			:			0.940
į - 1		,	1	V - 7 - 1	0.700	/ / -	-	10.1211	0.047	10.07	0.,,00	` ・ノ エノ	

M _∞ ≈		2.90	α =		0.0°	^m o	$/m_{\infty} =$	_0.977	7	Exit s	etting	=	<u>A</u>
₽ _{t₂}	$p_{t_{\infty}} =$	0.86	d _m	1/m _∞ =	0.09	Δ Δ	p _{t2} =	0.192	2		p ₂ /p	∞ =	25.5
RAKE NO.			Ť -	·Ŧ	ī	1	fi .	1	i	î	i	î	i i
3 5	0.855	0.861	0.821	0.911	0.899	0.915	1 4	0.771	0.822	0.830	0.899	0.899	0.929
								0.97					
RAKE NO.							n ·-···		-	_			,
1 3	0.905	0.891	0.896	0.883	0.873	0.882	2	0.892 0.926	0.895	0.899	0.877	0.878	0.879
5	0.919	0.895	0.909	0.877	0.884	0.860	_6	II I	0.890	0.902	0.887	0.882	0.860
$ar{p}_{ t z}$	$/p_{t_{\infty}} =$	0.899	9 ^m b	1/m _∞ =	0.10	<u>4</u> Δ:	p _{t2} =	_0.182	2		p ₂ /p ₀	» =	26.7
RAKE NO.	1	2	TUBE 3	NO.	5	6	RAKE NO.	1	2	TUBE 3	NO.	5	6
3	0.836	0.914	0.872	0.947	0.930	0.949	4_	0.843	0.871	0.864	0.919	0.926	0.946
				_	-	-		0.841					•
$ar{\mathtt{p}}_{t_{\mathcal{Z}}}$	$/p_{t_{\infty}} =$	0.869)mb:	$_{ m l}/{ m m}_{\infty} =$	0.08	₅ Δ ₁	o _{t2} =	0.197			p ₂ /p _c	» =	25.8
_						1	l	<u> </u>					
RAKE NO.	1	2	TUBE	4		6	RAKE NO.	1	2	TUBE 3	4	5	6

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t}}_2/{\rm p_{t_{\infty}}}$ - Continued

$M_{\infty} =$	-	2.90	_ α =		0.0	_ m _o /	m _∞ = .	0 .97	<u>7</u> E	Exit se	etting	=	<u>C</u>
₽ _{t2} /	$/p_{t_{\infty}} =$	0.87	9_ ^m bl	$_{\rm m} =$	0.10	<u>1</u> Δp	t ₂ =	0.14	1		p ₂ /p _o	。=	25.5
5	fi 1	0.876 0.908 0.887	0.892 0.896 0.904	0.866 0.872 0.873	0.872 0.874	0.864 0.872 0.848	2 4 6	1 0.904 0.927 0.918	0.886 0.894 0.881	0.893 0.893 0.901	4 0.861 0.836 0.876	0.860 0.848 0.874	0.863 0.803 0.835
	$/p_{t_{\infty}} =$												
3	1 0.805 0.835 0.811	2 0.857 0.913	0.838 0.922	4 0.912 0.934	0.908	0.951 0.926	4	1 0.852 0.811	0.909	0.872 0.899	4 0.925 0.929	0.913 0.901	0.919
	[O•OII]												
•	-										_		
$\bar{p}_{ t t_2}$	/p _t =	0.866	5 ^m b:	$_{ m l}/{ m m}_{\infty}$ =	0.072	- ∆r) _{t2} =	0.207	7		. p ₂ /p ₀	» =	25.5
RAKE NO.		2 0.811 0.875	TUBE 3 0.805 0.833	NO. 4 0.856 0.913	5 0.911 0.894	6 0.945 0.907	RAKE NO. 2	1 0.840 0. 7 67	2 0.850 0.839	TUBE 3 0.839 0.830	NO. 4 0.899 0.892	5 0.889 0.883	6 0.927 0.921
RAKE NO.	1 0.773 0.860 0.766	2 0.811 0.875	TUBE 3 0.805 0.833 0.863	NO. 4 0.856 0.913 0.893	5 0.911 0.894 0.926	6 0.945 0.907 0.931	RAKE NO. 2 4	1 0.840 0. 7 67	2 0.850 0.839 0.828	TUBE 3 0.839 0.830 0.818	NO. 4 0.899 0.892 0.873	5 0.889 0.883 0.927	6 0.927 0.921 0.943
RAKE NO. 1 3 $M_{\infty} =$	1 0.773 0.860 0.766	2 0.811 0.875 0.848	TUBE 3 0.805 0.833 0.863 α =	NO. 4 0.856 0.913 0.893	5 0.911 0.894 0.926 0.0°	6 0.945 0.907 0.931 	RAKE NO. 2 4 6	1 0.840 0.767 0.787 0.955	2 0.850 0.839 0.828	TUBE 3 0.839 0.830 0.818 Exit se	NO. 4 0.899 0.892 0.873 etting	5 0.889 0.883 0.927	6 0.927 0.921 0.943
RAKE NO. 1 3 $M_{\infty} =$	1 0.773 0.860 0.766	2 0.811 0.875 0.848	TUBE 3 0.805 0.833 0.863 α =	NO. 14 0.856 0.913 0.893	5 0.911 0.894 0.926 0.0°	6 0.945 0.907 0.931 	RAKE NO. 2 4 6	1 0.840 0.767 0.787 0.955	2 0.850 0.839 0.828	TUBE 3 0.839 0.830 0.818 Exit se	NO. 4 0.899 0.892 0.873 etting	5_ 0.889 0.883 0.927	6 0.927 0.921 0.943
RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$ RAKE	1 0.773 0.860 0.766 2 /p _{t_w} =	2 0.811 0.875 0.848 2.75 0.953	TUBE 3 0.805 0.833 0.863 — \alpha = \text{3} TUBE 3 0.952	NO. $^{1}_{4}$ 0.856 0.913 0.893 $^{1}/m_{\infty} = ^{1}$ NO. $^{1}_{4}$ 0.960	5 0.911 0.894 0.926 0.0°	6 0.945 0.907 0.931	RAKE NO. 2 $4 6$ $m_{\infty} =$ $RAKE NO. 2$	1 0.840 0.767 0.787 0.955	2 0.850 0.839 0.828 5 3 2	TUBE 3 0.839 0.830 0.818 Exit so TUBE 3 0.964	NO. 4 0.899 0.873 etting P ₂ /P ₀ NO. 4 0.977	5 0.889 0.883 0.927 = = 5 0.981	6 0.927 0.921 0.943 A 21.8

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

M _∞ =	= <u> </u>	2.75	α =	·	0.0°	m _c	$_{\rm O}/{\rm m}_{\infty} =$	0.9	55	Exit s	etting	; =	A
P _t	₂ /p _{t∞} =		35_ ^m b	1/m _∞ =	0.1	18 4	1p _{t2} =	0.08	B6		p ₂ /p) _∞ =	21.3
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.		2			5	6
1	0.919	0.918	0.924	0.943	0.942	0.904	2	0.920	0.928	0.938	0.947	0.937	0.922
3	0.961	0.943	0.962	0.939	0.934	0.915	4	0.969	0.948	0.961	0.937	0.945	0.898
5	0.927	0.921	0.933	0.968	0.965	0.895	6	0.954	0.921	0.914	0.951	0.955	0.888
M _∞ =	=	2.75	α =		0.0	m _C	$m_{\infty} =$	0.9	55	Exit s	etting	=	A
Pt ₂	/p _t _∞ =	_ 0.8	76_ ^m b	1/m _∞ =	_0.1	05 [△]	pt2 =	0.1	24		_ p ₂ /p	∞ = <u>-</u>	19.8
RAKE		·	TUBE	NO.		,	RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2	3	14	5	6
1	0.864	0.854	0.831	0.851	0.852	0.914	2	0.883	0.875	0.867	0.842	0.851	0.905
3	II	1	1	1	0.854	1	II	0.940	1		<u> </u>		7
5	0.921	0.857	0.864	0.870	0.874	0.923				-			0.906
M _∞ =		2.75	α =		0.0°	mo		0.9				•	
Pt2	$p_{t_{\infty}} =$	0.95	50 mb	$L/m_{\infty} =$	0.12	23_ ^Δ	p _{t2} =	0.09	94		. P ₂ /P ₀	» =	21.6
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	11	1	2			5	6
1	0.934	0.936	0.945	0.963	0.963	0.906	2	0.907	0.953	0.945	0.976	0.979	0.942
3								0.957					
_ 5	13	1 1			0.982		1 1	0.963		7		Ī	1
M _∞ =		2.75	α =		0.0	m _o ,		0.95					
₽ _{t2}	$/p_{t_{\infty}} =$	0.93	<u>14</u> m _{bl}	$m_{\infty} =$	0.10	8_ ^Δ I	Pt2 = _	0.08	7		p ₂ /p _a	=	21.1
RAKE			TUBE	MO						TUBE	NO.		
NO.	1	2	3	4	5	6	RAKE NO.	1	2	3	4	5	6
1	_				0.938				†		-		-
3			1		0.942		i	0.923 (0.960 (· · · · · · · · · · · · · · · · · · ·		
		<u> </u>			0.959		ii	0.945		ĭ	i	1	
	- 7-0	>=	J- L		~• ///	0.500		· 7471	V • 711	7.700	0.7701	0.721	0.003

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

M _∞ =		2.75	<u></u> α =		0.0°	m _{o/}	/m _∞ = .	0.95	<u>5</u> 1	Exit s	etting	=	<u>B</u>
Pt2	$/p_{t_{\infty}} =$	0.88	8 m _b	$L/m_{\infty} =$	0.09	<u>9</u> Δ ₁	p _{t2} = _	0.11	1		p ₂ /p ₀	_∞ = <u>19</u>	9.9
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3 _	14	5	6	NO.	ii	2	3	4	5	6
1	0.878	0.858	0.857	0.873	0.867	0.904	2	0.905	0.886	0.890	0.851	0.858	0.907
3	0.935	0.900	0.925	0.870	0.866	0.877	4	0.945	0.910	0.927	0.865	0.867	0.890
5	0.929	0.869	0.886	0.894	0.892	0.907							0.882
									5 I				
p̄t≥/	/p _{t∞} =	0.94	<u>О</u> тъ	$_{\rm L}/{\rm m}_{\infty} =$	0.10	4) _{t2} = .	0.11	0		. p ₂ /p	» =	21.2
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6			2	3	4	5	6
1	0.925	0.923	0.929	0.956	0.951	0.898	5	0.934	0.939	0.942	0.952	0.952	0.925
3	0.967	0.949	0.980	0.955	0.951	0.912	4	0.953	0.955	0.980	0.949	0.950	0.882
5	0.915	0.927	0.937	0.972	0.966	0.905	6	0.960	0.923	0.922	0.962	0.965	0.877
M _∞ =	2	2.75	α =		0.0°	m/	/m _∞ =	0.95	5 <u> </u>	Exit s	etting	=	C
Pt ₂ /	/ Pt _∞ =	0.906	<u>5</u> "b]		0.088	<u>3</u> ^Δ	t ₂ =	0.099	9		. P ₂ /P ₀	» =	20.3
RAKE			TUBE	NO.			RAKE		1	TUBE	NO.		
NO.	1	2	3	Ъ,	5	6	NO.	1	2	3	4	5	6
1	0.889	0.883	0.873	0.910	0.892	0.896	2	0.930	0.891	0.896	0.897	0.887	0.909
3	0.946	0.922	0.949	0.911	0.897	0.907	4	0.949	0.914	0.952	0.906	0.893	0.901
5	0.892	0.896	0.880	0.938	0.920	0.889	6	0.931	0.887	0.862	0.924	0.912	0.883
$M_{\infty} =$	2	2.50	_ α =		0.0°	m _o /	$m_{\infty} = 1$	0.87	_ I	Exit s	etting	=	A
ē _{t≥} ⁄	$/p_{t_{\infty}} =$	0.948	3 <u>m</u> b:	$_{\rm L}/{\rm m}_{\infty}$ =	0.127	^{^]}	pt2 = .	0.075	5		p ₂ /p ₀	» =	15.2
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	14	5	6
ll	0.907	0.907	0.929	0.975	0.977	0.978	2	0.914	0.923	0.934	0.961	0.972	0.967
3	0.915							1	0.927				
	0.925							0.925	0.916	0.913	0.969	0.971	0.971

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

M _∞ =	2	2.50	α =	:	0.0	m _O .	/m _∞ =	0.871		Exit s	etting	=	Α
\bar{p}_{t_2}	$p_{t_{\infty}} =$	0.932		$_1/m_\infty =$	0.109) Δ:	p _{t2} = .	0.088	3		p ₂ /p	∞ = <u> </u>	15.0
RAKE			TUBE	NO.			RAKE			TUBE	NO.		ĺ
NO.	1	2		14	5	6	NO.	1	2	3	4	5_	[6]
1	0.893	0.889	0.911	0.952	0.963	0.971	2	0.902	0.897	0.905	0.942	0.958	0.960
3	0.906	0.906	0.934	0.949	0.953	0.954	4	0.918	0.906	0.934	0.951	0.956	0.963
	0.908	0.897	0.926	0.958	0.964	0.962	6	0.912	0.897	0.898	0.951	0.960	0.964
M _∞ =		2.50	α =		0.0	m _o ,	$m_{\infty} = 1$	0.87	<u> </u>	Exit s	etting	=	Α
₽ _{t2}	$/p_{t_{\infty}} =$	0.88	lm _b	$_{\rm l}/{\rm m}_{\infty}=$	0.09	L △ ₁	Pt2 = .	0.189	9		_ p ₂ /p ₀	∞ = <u> </u>	13.5
RAKE			TUBE	NO.			RAKE	 		TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2]_3_	4	5	6
1	0.783	0.836	0.898	0.938	0.918	0.945	2	0.779	0.786	0.817	0.869	0.909	0.919
3	0.788	0.837	0.916	0.928	0.927	0.928	4	0.807	0.856	0.917	0.935	0.931	0.935
5	0.802	0.833	0.877	0.927	0.936	0.928	6	0.793	0.822	0.872	0.933	0.938	0.937
M _m =	2	2.50	α =		0.0	m	/m _∞ =	0.871	L :	Exit s	etting	=	В
$ar{\mathtt{p}}_{\mathtt{t}_{2}}$	$/p_{t_{\infty}} =$	0.945	<u>m</u> b:	$1/m_{\infty} =$	0.110) ^]	Pt2 = .	0.080)		p ₂ /p ₀	_∞ =	15.1
RAKE			TUBE	NO.			RAKE			TUBE	NO.	-	
NO.	1	2	3	<u> </u>	5_	6	NO.	1	2	3	4	5	6
1	0.903	0.902	0.932	0.971	0.975	0.978	2	0.917			Ī	1	Τ 7
3	0.915	0.927	0.956	0.958	0.962	0.962	14	0.932	0.928	0.955	0.962	0.964	0.968
5	0.917	0.907	0.943	0.969	0.970	0.969	6	0.918	0.911	0.914	0.966	0.969	0.970
M _∞ =	2	2.50	_ α =		0 . 0°	m _o /	/m _∞ =	0.871		Exit s	etting	=	В
<u>.</u>	/p _t =	0 000	, m ₂ .	/m_ =	0.700	, Δτ)+ =	0 00	,		p /p	» =	1 li O
-T2	^{7 ₽} ₹∞	0.932		 	0.100			0.001				×	
RAKE			TUBE	NO.			RAKE			TUBE	NO.		ļ
NO.	1	2	3	4	5	6	NO.	11	2	3	<u>}</u>	5	6
1	0.887		0.913	0.955	0.961	0.968	2	0.898	0.899		0.952	0.957	0.960
			· · ·			ii					1		
3	0.907	0.911	0.945	0.949	0.952	0.953	_ 4	0.913	0.908	0.943	0.953	0.954	0.960

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

M _∞ =	2.50	α =	0.0°	$m_{O}/m_{\infty} =$	0.871	I	Exit se	etting	=	В
\overline{p}_{t_2}	$p_{t_{\infty}} = 0.884$	m _{bl} /m∞	= <u>0.085</u>	$\Delta p_{t_2} =$	0.185			p ₂ /p _c	。=	13.7_
3	1 2 0.793 0.814 0.797 0.849 0.813 0.825 2.50	0.918 0.93 0.876 0.92	3 0.926 0 0 0.927 0 5 0.934 0	.951 2 .923 4 .931 6	0.789 0.823 0.811	0.787 0.861 0.849	0.811 0.917 0.912	4 0.874 0.935 0.940	0.927 0.938	0.940
	p _{t∞} = 0.941									
3	r	0.958 0.96	7 0.977 0 0 0.959 0	.979 2 .960 4	1 0.904 0.927	0.909 0.926	0.956	4 0.966 0.964	0.959	0.957
	2.50	•	•	-			<u> </u>			
ē _{t2} /	'Pt _∞ = <u>0.929</u>	9_ m _{b1} /m∞	= 0.083	_	0.103	3		. p ₂ /p ₀	» = _	14.7
1 3	1 2 0.878 0.874 0.896 0.903 0.885 0.884	0.904 0.95 0.935 0.95	6 0.967 0 2 0.956 0	.970 2 .956 4	1 0.889 0.898	0.887 0.900	0.899	4 0.950 0.955	0.960	0.960
$M_{\infty} =$	2.50	α =	0.0°	$_{\rm m_{\rm O}/m_{\infty}} =$	0.871	<u> </u>	Exit s	etting	= .	C
ē _{t≥} /	$p_{t_{\infty}} = 0.876$	$_{\rm 5}$ $m_{\rm bl}/m_{\infty}$	= 0.072	_ ^p _{t2} =	0.257	7		p ₂ /p ₀	× =	13.4_
RAKE NO.	1 2	TUBE NO.	5	RAKE NO.		2	TUBE 3	NO.	5	6
1 #	0.752 0.782 0.752 0.799	1 1 1	; ;	. #	0.743 0.759	1	1			

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t}}_{\rm 2}/{\rm p_{t_{\infty}}}$ - Continued

M _∞ =	·	2.25	_ α =	: <u></u>	0.0	_ m _o	/m _∞ =	0.80	8	Exit s	etting	; =	A
$ar{ ext{p}}_{ ext{t}_z}$	₂ /p _{t∞} =	0.94	8_ ^m b	1/m _∞ =	0.11	<u>2</u> Δ	p _{t2} =	_ 0.06	7		p ₂ /r) _∞ =	10.2
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.911	0.910	0.934	0.968	0.969	0.973	2	0.911	0.916	0.934	0.957	0.967	0.971
3	#	 		1	0.973	+	# -	0.920	0.926	0.956	0.967	0.972	0.972
5	0.926	0.921	0.956	0.964	0.969	0.968	6	0.913	0.917	0.936	0.959	0.967	0.973
M _∞ =	·	2.25	_ α =		0.0°	m _o	$/m_{\infty} = 1$	0.80	8	Exit s	etting	=	<u>A</u>
₽ _{t₂}	$/p_{t_{\infty}} =$	0.93	7 m _b	$_1/m_\infty =$	0.098	3	p _{t2} =	0.10	4		_ p ₂ /p	∞ =	10.0
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6_
1	0.884	0.886	0.921	0.968	0.972	0.973	2	0.878	0.884	0.915	0.962	0.970	0.971
3	0.876	0.897	0.960	0.963	0.972	0.972)4	0.902	0.917	0.955	0.968	0.970	0.962
5	0.891	0.906	0.945	0.965	0.968	0.960	6	0.879	0.888	0.916	0.963	0.969	0.970
M _∞ =	:2	2.25	_ α =		0.0	m _o ,	$/m_{\infty} = 1$	0.808	3	Exit s	etting	=	<u>A</u>
P _{t2}	$p_{t_{\infty}} =$	0.886	5_ ^m b	1/m∞ =	0.078	$\underline{}^{\Delta_{]}}$	p _{t2} = .	0.162	2		p ₂ /p	∞ ⁼	9.2
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.795	0.831	0.880	0.917	0.933	0.932	2	0.792	0.828		0.902	0.921	0.929
	0.813		7					1	0.831			 	<u> </u>
5	0.818	0.869	0.912	0.934	0.936	0.936	6	0.799	0.843	0.891	0.927	0.936	0.929
M _∞ =	2	2.25	_ α =		0.0°	m _o /	$m_{\infty} = 1$	0.808	3 1	Exit s	etting	=	В
- p _{+ -}	/p _t =	0 . 978	} m _h .	1/m _m =	0.102	ړک	o _{t.a} =	0.078	}		р./р	» =	10.2
	r − 0∞						· · ·				 -	×	
RAKE	ļ		TUBE				RAKE			TUBE		· · ¡	
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1.					0.974			0.901	0.909	0.930	0.967	0.972	0.973
3	0.915		•					, ,	0.930				
5	0.919	0.919	0.954	0.967	0.971	0.969	6	0.905	0.916	0.938	0.964	0.969	0.973

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

$M_{\infty} =$		2.25	<u>α</u> =		0.0°	m _o /	′m _∞ =	0.80	08 E	Exit se	etting	=	В
₹ _{t2} /	$/p_{t_{\infty}} =$	0.938	mbl	$_{\rm L}/{\rm m}_{\infty} =$	0.090	<u>Δ</u>)t2 =	0.10	02		p ₂ /p _c	_∞ =	9.9
RAKE NO.	1	2	TUBE		5	6	RAKE NO.	1	2	TUBE 3		5	6
1 1	0.881	0.903	0.936	0.969	0.972	0.972	2	0.877	0.891	0.921	0.962	0.970	0.970
	ļļ	Į .	Į.	Į	Į I	!	ļ	0.895					
l 5	0.894	0.906	0.944	0.967	0.969	0.963	6	0.878	0.893	0.925	0.963	0.970	0.970
$M_{\infty} =$		2.25	<u>α</u> =		0.0	m _o /	$m_{\infty} = 1$	0.80	<u>8</u> 1	Exit se	etting	=	<u>B</u>
₽ _{t2}	$/p_{t_{\infty}} =$	0.89	m _b :	$_{\rm L}/{\rm m}_{\infty}$ =	0.074	^I) _{t2} =	0.16	<u>5</u> 1		. p ₂ /p ₀	» =	9.3
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	iľ	2	3	14	5	6	NO.	1	2	3	Ъ	5	6
1	0.806	0.851	0.903	0.931	0.940	0.939	2	0.798	0.827	0.870	0.910	0.930	0.937
3	0.829	0.877	0.911	0.923	0.928	0.930	14	0.817	0.862	0.904	0.923	0.930	0.931
5	0.824	0.876	0.916	0.936	0.939	0.942	.6	0.805	0.845	0.896	0.933	0.937	0.933
$M_{\infty} =$		2.25	_ α =		0.0°	m _o /	′m _∞ =	0.80	<u>8</u> 1	Exit se	etting	=	C
₽ _{t2}	$/p_{t_{\infty}} =$	0.938	3_ ^m b:	$_{ m L}/{ m m}_{\infty}$ =	0.081	<u>↓</u> △j	o _{t2} =	0.10	00		. p ₂ /p	» =	10.0
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	l	2	3	<u> </u>	5] 1	2	3 .	_ 4	5	6
1	0.885	0.899	0.937	0.963	0.965	0.973	2	0.880	0.896	0.927	0.953	0.965	0.971
3	0.895	0.916	0.944	0.957	0.967	0.973	4	0.902	0.911	0.940	0.960	0.971	0.972
5	0.895	0.902	0.939	0.959	0.966	0.968	6	0.884	0.901	0.932	0.957	0.964	0.969
$M_{\infty} =$		2.25	_ α =		0.0	m _o /	$m_{\infty} =$	0.88	81	Exit s	etting	=	<u>C</u>
$ ilde{ ilde{p}}_{ t 2'}$	/p _t =	0.90	<u>3</u> ^m b:	$_{\rm L}/{\rm m}_{\infty} =$	0.069	Δ	Pt2 =	0.14	-5		p ₂ /p	∞ = <u> </u>	9.4_
RAKE			TUBE	NO.		1	RAKE			TUBE	NO.		
NO.	1	2	. 3	14	5	6	NO.	1	2	3	14	5	6
1	0.827	0.866	0.912	0.937	0.941	0.942	2	0.814	0.844	0.890	0.924	0.937	0.940
3	ř	0.881	i î			î i	i	0.833					
5		0.879					l .	ii :					0.939

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

M _∞ =		2.00	α =		0.0°	m _o /	$m_{\infty} = 1$			Exit s	etting	=	A
\overline{p}_{t_2}	$/p_{t_{\infty}} =$	<u>.897</u>	mb:	l/m _∞ =	0.106		9t2 = .	0.10)1		p ₂ /p	» = <u> </u>	_6.4
RAKE		т ———	TUBE	NO.	T	1	RAKE			TUBE	NO.	Ī -	,
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
ı	0.915	0.927	0.921	0.884	0.862	0.852	2	0.912	0.928	0.922	0.892	0.868	0.849
3	0.912	0.930	0.939	0.898	0.866	0.854	4	0.894	0.921	0.935	0.916	0.885	0.863
5	0.908	0.926	0.934	0.899	0.867	0.852	6	0.908	0.926	0.917	0.888	0.867	0.852
$M_{\infty} =$		2.00	α =		0.0°	m _o /	$m_{\infty} = 1$	0.6	96:	Exit s	etting	=	Α
₽t2	$/p_{t_{\infty}} =$	0.095	m _{b]}	$_{\rm l}/{\rm m}_{\infty} =$	0.897	<u>'</u> Δŗ	o _{t2} =	.0	78		p ₂ /p ₀	_∞ =	6.8
RAKE			TUBE	NO.			DAIZE			TUBE	NO.		
NO.	1	5	3	14	5	6	NO.	1	2	3	14	5	6
1	0.899	I			ı	1 1	("	i	1	ł	į	, ,
	0.897		i i		Γ	I I	ſ	lî .	1	1		1	0.963
	0.902	i	î			T I		0.897	0.914	0.934	0.948	0.963	0.965
$M_{\infty} =$					0.0°	m _o /	$m_{\infty} = 1$	0.69	<u> 96</u> :	Exit s	etting	=	<u>A</u> _
	/p _{t,∞} =	2.00	_ a =										
ē _{t2}	/p _t =	2.00 .890	_ α = mb]		0.076	Δ <u>r</u>) _{t2} = .	0.1	70		p ₂ /p ₀	» =	6.4
	/p _t =	2.00 .890	_ α = mb]		0.076	Δ <u>r</u>) _{t2} = .	0.1	70		p ₂ /p ₀	» =	6.4
P _{t2}	/p _{t_∞} =	2.00 .890	$\alpha = \frac{m_{bl}}{TUBE}$	$1/m_{\infty} = \frac{1}{NO}$	0.076	Δ _I	RAKE	0.1	70 2	TUBE	p/p,	» = 5	6.4
RAKE NO.	/ _{Pt_∞} =	2.00 .890 _2 0.861	$\alpha = \frac{m_{b1}}{TUBE}$ 0.886	$\frac{1}{m_{\infty}} = \frac{1}{m_{\infty}}$ NO. $\frac{1}{m_{\infty}} = \frac{1}{m_{\infty}}$ 0.922	0.076 5 0.941	△ _r 6 0.939	Pt ₂ = RAKE NO.	0.1	2 0.827	TUBE 3	P/P, NO. 4 0.899	» =	6.4 6 0.936
RAKE NO.	/Pt _w =	2.00 .890 2 0.861 0.837	α = m _b TUBE 3 0.886 0.886	$1/m_{\infty} = $ NO. $\frac{1}{4} = $ 0.922 0.914	0.076 5 0.941 0.933	Δ _I 6 0.939 0.948	RAKE NO. 0 2	0.1	2 0.827 0.837	TUBE 3 0.865 0.875	P ₂ /P ₀ NO. 4 0.899 0.917	5 0.925 0.939	6.4 6 0.936 0.954
RAKE NO.	/ _{Pt_∞} =	2.00 .890 2 0.861 0.837 0.854	TUBE 3 0.886 0.886 0.884	$1/m_{\infty} =$ NO. $\frac{1}{4} = 0.922$ 0.914 0.937	0.076 5 0.941 0.933 0.959	6 0.939 0.948 0.963	RAKE NO. 0 2 4 6	0.1° 1 0.812 0.817 0.823	2 0.827 0.837 0.844	TUBE 3 0.865 0.875 0.862	P ₂ /P ₀ NO. 4 0.899 0.917	5 0.925 0.939 0.933	6.4 6 0.936 0.954 0.945
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} =$	/pt _∞ =	2.00 .890 2 0.861 0.837 0.854 2.00	$\alpha = \frac{m_{b1}}{TUBE}$ 3 0.886 0.886 0.884	$1/m_{\infty} = \frac{1}{1/m_{\infty}}$ NO. $\frac{1}{1/m_{\infty}} = \frac{1}{1/m_{\infty}}$ 0.922 0.914 0.937	0.076 5 0.941 0.933 0.959 0.0°	6 0.939 0.948 0.963	$\begin{array}{c} \text{RAKE} \\ \text{NO.} \\ \\ \text{O 2} \\ \\ \text{4} \\ \\ \text{6} \\ \\ \text{m}_{\infty} = \\ \end{array}$	0.1 ^r 0.812 0.817 0.823	2 0.827 0.837 0.844	TUBE 3 0.865 0.875 0.862	p / p no. No. 4 0.899 0.917 0.896 etting	5 0.925 0.939 0.933	6.4 6 0.936 0.954 0.945 B
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} =$	/Pt _w =	2.00 .890 2 0.861 0.837 0.854 2.00	$\alpha = \frac{m_{b1}}{TUBE}$ 3 0.886 0.886 0.884	$1/m_{\infty} =$ NO. $\frac{1}{4} = 0.922$ 0.914 0.937 $1/m_{\infty} =$	0.076 5 0.941 0.933 0.959 0.0°	6 0.939 0.948 0.963	$\begin{array}{c} \text{RAKE} \\ \text{NO.} \\ \\ \text{O 2} \\ \\ \text{4} \\ \\ \text{6} \\ \\ \text{m}_{\infty} = \\ \end{array}$	0.1 ^r 0.812 0.817 0.823	2 0.827 0.837 0.844	TUBE 3 0.865 0.875 0.862	p/p, NO. 4 0.899 0.917 0.896 etting	5 0.925 0.939 0.933	6.4 6 0.936 0.954 0.945 B
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$	/Pt _w =	2.00 .890 2 0.861 0.837 0.854 2.00	$\alpha = \frac{m_{b}}{TUBE}$ 3 0.886 0.886 0.884 $\alpha = \frac{m_{b}}{TUBE}$	$1/m_{\infty} =$ NO. $\frac{1}{4} = 0.922$ 0.914 0.937 $1/m_{\infty} =$	0.076 5 0.941 0.933 0.959 0.0°	6 0.939 0.948 0.963	$\begin{array}{c} \text{RAKE} \\ \text{NO.} \\ \text{O 2} \\ \text{4} \\ \text{6} \\ \text{m}_{\infty} = \\ \text{Ct}_{2} = \\ \end{array}$	0.1 ^r 0.812 0.817 0.823	2 0.827 0.837 0.844	TUBE 3 0.865 0.875 0.862 Exit se	p/p, NO. 4 0.899 0.917 0.896 etting	5 0.925 0.939 0.933	6.4 6 0.936 0.954 0.945 B
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO.	/Pt _w =	2.00 .890 2 0.861 0.837 0.854 2.00	α = mb1 TUBE 3 0.886 0.886 0.884 α = mb1 TUBE 3	$1/m_{\infty} =$ NO. $\frac{1}{4} = 0.922$ 0.914 0.937 $1/m_{\infty} =$ NO. $\frac{1}{4} = 0.937$	0.076 5 0.941 0.933 0.959 0.0° 0.094	6 0.939 0.948 0.963 m _o /	$\begin{array}{c} \text{RAKE} \\ \text{NO.} \\ \\ \text{O 2} \\ \\ \text{4} \\ \\ \text{6} \\ \\ \text{m}_{\infty} = \\ \\ \text{RAKE} \\ \\ \text{NO.} \\ \\ \end{array}$	0.1 ^r 0.812 0.817 0.823	2 0.827 0.837 0.844	TUBE 3 0.865 0.875 0.862 Exit se TUBE 3	p/p, NO. 4 0.899 0.917 0.896 etting p/p, NO.	5 0.925 0.939 0.933 =	6.4 6 0.936 0.954 0.945 B 6.3
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO. 1	/pt _w = 0.830 0.818 0.827 /pt _w = 1 0.906	2.00 .890 2 0.861 0.837 0.854 2.00 .889	TUBE 3 0.886 0.884 α = mb1 TUBE 3 0.913	$1/m_{\infty} =$ NO. $\frac{1}{4} = 0.922$ 0.914 0.937 $1/m_{\infty} =$ NO. $\frac{1}{4} = 0.877$	0.076 5 0.941 0.933 0.959 0.0° 0.094	6 0.939 0.948 0.963 m _o /	RAKE NO. O 2 $\frac{4}{6}$ $m_{\infty} =$ RAKE NO. 2	0.1° 1 0.812 0.817 0.823 0.10	2 0.827 0.837 0.844 01 2	TUBE 0.865 0.875 0.862 Exit so TUBE 3 0.918	p/p, NO. 4 0.899 0.917 0.896 etting p/p, NO. 14	5 0.925 0.939 0.933 = 0.855	6.4 6 0.936 0.954 0.945 B 6.3 6
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO.	/Pt _w = 1 0.830 0.818 0.827 /Pt _w = 1 0.906 0.904	2.00 .890 2 0.861 0.837 0.854 2.00 .889 2 0.920 0.923	TUBE 3 0.886 0.886 0.884 α = mb1 TUBE 3 0.913 0.936	$1/m_{\infty} =$ NO. $\frac{1}{4} = 0.922$ 0.914 0.937 $1/m_{\infty} =$ NO. $\frac{1}{4}$ 0.888	0.076 5 0.941 0.933 0.959 0.0° 0.094 5 0.862	6 0.939 0.948 0.963 m _o /	RAKE NO. RAKE NO. RAKE NO. RAKE NO. 2	0.1 ^r 0.812 0.817 0.823 0.10 1 0.900 0.889	2 0.827 0.837 0.844 0.1 2 0.919	TUBE 3 0.865 0.862 Exit se TUBE 3 0.918 0.930	p/p, NO. 4 0.899 0.917 0.896 etting p/p, NO. 4 0.879	5 0.925 0.939 0.933 = 5 0.855 0.866	6.4 6 0.936 0.954 0.945 B 6.3 6

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_{\infty}}}$ - Continued

M _∞ =	2	.00	_ α =		0.0°	_ m _o /	/m _∞ =	0.696	<u>. </u>	Exit s	etting	=	В
\overline{p}_{t_2}	$/p_{t_{\infty}} =$	0.935	m _b	$_{\rm L}/{\rm m}_{\infty} =$	0.084		9 _{t2} =	0.082	!		p ₂ /p ₀	_∞ =	6.7
RAKE NO.		2	TUBE 3	NO	5	6	RAKE NO.	1	2	TUBE 3	NO.	5	6
:	!!!!!		!	1	!	!!	2	#	<u> </u>	!		: —	0.947
•	:: :		:	1	!	:	1	H	ŧ	:			0.958
			-	-				_	_				0.962
$M_{\infty} =$	2	.00	<u>α</u> =	(0.0	m _o /	$m_{\infty} = 1$	0.696		Exit s	etting	=	B
₽t ₂	$/p_{t_{\infty}} =$	0.916	^m b]	$_{\rm L}/{\rm m}_{\infty} =$	0.075)t ₂ =	0.146			. p ₂ /p ₆	_∞ =	6.5
RAKE	F I		TUBE	NO.			RAKE			TUBE	NO.	-	
NO.	ii i	2	3	14	5	6	NO.		2	3	4	5	6
1	0.844	0.864	0.903	0.959	0.970	0.966	2	0.837	0.853	0.881	0.926	0.954	0.964
3	0.843	0.861	0.921	0.951	0.968	0.967	14	0.836	0.862	0.916	0.957	0.966	0.962
5	0.843	0.875	0.928	0.965	0.965	0.957	6	0.840	0.869	0.903	0.956	0.970	0.970
M _∞ =	_ 2.				0.0	m _o /	′m _∞ =			Exit s	etting	=	
		.00	_ α =					0.696	1				C
		.00	_ α =					0.696	1				C
	/p _{t,∞} =	.00 <u>0.93</u>	_ α = 1 _ mbl	$_{\rm L}/m_{\infty} =$	0 .07	3 ^{^_}	ot ₂ =	0.696 0.09	92 	TUBE	p ₂ /p ₀	» = _	6.6
₽ _{t2}	/p _{t,∞} =	.00 <u>0.93</u>	_ α = 1 _ mbl	$_{\rm L}/m_{\infty} =$	0 .07	3 ^{^_}	ot ₂ =	0.696	92 	TUBE	p ₂ /p ₀	» = _	6.6
P _{t2}	/p _{t,∞} =	0.93	$\alpha = \frac{1}{1} \text{ mb}$ TUBE 3	$\frac{1}{m_{\infty}} = \frac{1}{m_{\infty}}$ NO.	0 <u>.07:</u>	β Δ _Ι	Pt ₂ =	0.696	92	TUBE 3	p ₂ /p ₀	x = _	6.6
P _{t2}	/p _{t,∞} =	0.93 2 0.911	$\alpha = \frac{1}{1} \text{ mb}$ FUBE 3 0.944		0 <u>.07</u>	3 Δ <u>τ</u> 6 0.947	Pt ₂ = RAKE NO.	0.696	2	TUBE 3 0.940	P ₂ /P ₀ NO. 4 0.950	5 0.95 <u>3</u>	6.6 6
P _{t2} RAKE NO.	/p _{t,∞} = 1 0.880 0.882	0.93 2 0.911 0.915	$\alpha = \frac{1}{1} \text{ mb}$ FUBE 3 0.944 0.948	$1/m_{\infty} = 0.954$	0 .073 5 0.956 0.954	6 0.947 0.948	RAKE NO.	0.696	92 2 0.901 0.910	TUBE 3 0.940 0.945	P ₂ /P ₀ NO. 4 0.950 0.951	5 0.953 0.949	6.6 6 0.946
RAKE NO.	/p _{t,∞} = 1 0.880 0.882	0.93 2 0.911 0.915 0.911	$\alpha = \frac{1}{1}$ mb1 TUBE 3 0.944 0.948 0.946		0 .073 5 0.956 0.954 0.956	6 0.947 0.948 0.953	RAKE NO. 2	0.696 0.09 1 0.871 0.883 0.873	92 2 0.901 0.910	TUBE 3 0.940 0.945 0.930	P ₂ /P ₀ NO. 4 0.950 0.951 0.956	5 0.95 <u>3</u> 0.94 <u>9</u> 0.956	6.6 6 0.946 0.949 0.956
$ \begin{array}{c c} \bar{P}_{t_2} \\ RAKE \\ NO. \end{array} $ $ \begin{array}{c c} 1 \\ 3 \\ 5 \\ M_{\infty} = \end{array} $	/p _{t,∞} = 1 0.880 0.882 0.881	0.93 2 0.911 0.915 0.911	$\alpha = \frac{1}{1} m_{b}$ TUBE 3 0.944 0.948 0.946 $\alpha = \frac{1}{1} m_{b}$		0.07 5 0.956 0.954 0.956	6 0.947 0.948 0.953	$\begin{array}{c} P_{t_2} = \\ RAKE \\ NO. \\ 2 \\ 4 \\ 6 \\ m_{\infty} = \end{array}$	0.696 0.09 1 0.871 0.883 0.873 0.696	2 0.901 0.910 0.904	TUBE 3 0.940 0.945 0.930 Exit so	P ₂ /P ₀ NO. 4 0.950 0.951 0.956 etting	5 0.95 <u>3</u> 0.94 <u>9</u> 0.956	6.6 6 0.946 0.949 0.956
\bar{P}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{P}_{t_2}$	/p _{t,∞} = 1 0.880 0.882 0.881	0.93 2 0.911 0.915 0.911	$\alpha = \frac{1}{1} \text{ mb}$ TUBE 3 0.944 0.948 0.946 $\alpha = \frac{1}{1} \text{ mb}$		0.07 5 0.956 0.954 0.956	6 0.947 0.948 0.953	RAKE NO. 2 4 6 $m_{\infty} =$	0.696 0.09 1 0.871 0.883 0.873 0.696	2 0.901 0.910 0.904	TUBE 3 0.940 0.945 0.930 Exit so	P ₂ /P ₀ NO. 4 0.950 0.951 0.956 etting P ₂ /P ₀	5 0.95 <u>3</u> 0.94 <u>9</u> 0.956	6.6 6 0.946 0.949 0.956
$ \begin{array}{c c} \bar{P}_{t_2} \\ RAKE \\ NO. \end{array} $ $ \begin{array}{c c} 1 \\ 3 \\ 5 \\ M_{\infty} = \end{array} $	/p _{t,\infty} = 1	0.93 2 0.911 0.915 0.911 00 0.896	TUBE TUBE TUBE TUBE	$1/m_{\infty} = 1$ NO. 4 0.954 0.955 0.957	0.073 5 0.956 0.954 0.956 0.064	6 0.947 0.948 0.953 m _o /	$\begin{array}{c} P_{t_2} = \\ RAKE \\ NO. \\ 2 \\ 4 \\ 6 \\ m_{\infty} = \end{array}$	0.696 0.09 1 0.871 0.883 0.873 0.696	2 0.901 0.910 0.904	TUBE 3 0.940 0.945 0.930 Exit so	P ₂ /P ₀ NO. 4 0.950 0.951 0.956 etting P ₂ /P ₀	5 0.953 0.949 0.956 = 4	6.6 6.6 0.946 0.949 0.956 C
RAKE NO. 1 3 5 M _∞ = \$\bar{p}_{t_2}\$ RAKE NO.	/pt _{\infty} = 1	0.93 2 0.911 0.915 0.911 00 0.896	α = 1 mb1 FUBF 3 0.944 0.948 0.946 α = mb1 TUBE 3	$/m_{\infty} = 1$ NO. 4 0.954 0.955 0.957 $//m_{\infty} = 1$ NO. 4	0.073 5 0.956 0.954 0.956 0.064	6 0.947 0.948 0.953	RAKE NO. 2 $4 6$ $m_{\infty} =$ RAKE NO.	0.696 0.09 1 0.871 0.883 0.873 0.696 0.18	2 0.901 0.910 0.904	TUBE 3 0.940 0.945 0.930 Exit so	P_{2}/P_{0} NO. 4 0.950 0.951 0.956 etting P_{2}/P_{0} NO. 4	5 0.953 0.949 0.956 = "	6.6 6.0.946 0.949 0.956 C 6.2
\bar{p}_{t_2} RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t_2}$ RAKE NO. 1	/p _{t,\infty} = 1	0.93 2 0.911 0.915 0.911 00 0.896 2 0.851	α = 1 mb1 TUBE 3 0.944 0.946 0.946 α = mb1 TUBE 3 0.888	$m_{\infty} = \frac{1}{m_{\infty}}$ NO. 4 0.954 0.955 0.957 $m_{\infty} = \frac{1}{m_{\infty}}$ NO. 4 0.925	0.073 5 0.956 0.954 0.956 0.064 5 0.052	6 0.947 0.948 0.953 m _o / Δ _I 6 0.961	RAKE NO. 2 4 6 $m_{\infty} =$ RAKE NO. 2	0.696 0.09 1 0.871 0.883 0.873 0.696 0.18	2 0.901 0.910 0.904 31 2 0.838	TUBE 3 0.940 0.945 0.930 Exit so TUBE 3 0.868	P ₂ /P ₀ NO. 4 0.950 0.951 0.956 etting P ₂ /P ₀ NO. 4 0.905	5 0.953 0.949 0.956 = 5 0.941	6.6 6.6 0.946 0.949 0.956 C 6.2 6
$\bar{p}_{t,2}$ RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$ RAKE NO. 1 3	/p _{t,\infty} = 1	0.93 2 0.911 0.915 0.911 00 0.896 2 0.851 0.829	α = 1 mb1 FUBF 3 0.944 0.948 0.946 α = mb1 TUBE 3 0.888 0.897	$/m_{\infty} = 1$ NO. $/m_{\infty} = 1$ 0.955 0.957 $/m_{\infty} = 1$ NO. $/m_{\infty} = 1$ 0.925 0.917	0.077 5 0.956 0.954 0.956 0.064 5 0.952 0.945	6 0.947 0.948 0.953 m _o / Δ _I 6 0.961 0.964	RAKE NO. $ \begin{array}{ccc} \text{RAKE} & & \\ \text{NO.} & & \\ &$	0.696 0.09 1 0.871 0.883 0.696 0.18 1 0.807 0.806	2 0.901 0.910 0.904 31 2 0.838 0.847	TUBE 3 0.940 0.945 0.930 Exit so TUBE 3 0.868 0.893	P ₂ /P ₀ NO. 4 0.950 0.956 etting P ₂ /P ₀ NO. 4 0.905 0.937	5 0.953 0.949 0.956 = 5 0.941 0.956	6.6 6.0.946 0.949 0.956 C 6.2

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

M _∞ =		1.75	_ α =		0.0	m _o	/m _∞ =		-	Exit s	etting	=	Α
p t2	/p _t =	_0.9	<u>42</u> mb	1/m _∞ =	0.09	6 <u></u> Δ:	p _{t2} = .	0.0	53		p ₂ /p	_∞ =	4.7
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.964	0.950	0.936	0.934	0.935	0.927	2	0.976	0.959	0.941	0.930	0.931	0.926
3	0.968	0.954	0.941	0.931	0.932	0.930	4	0.965	0.953	0.937	0.933	0.933	0.932
5	0.963	0.951	0.938	0.937	0.937	0.934	6	0.955	0.947	0.940	0.936	0.936	0.936
								0.60	061	Exit s	etting	=	A
ēt _z	/p _{t_∞} =	0.95	51_m _b :	1/m _∞ =	0.081		ot2 = .	0.01	+4		p ₂ /p	_∞ =	4.7
RAKE			TUBE	NO.		·	RAKE		· · ·	TUBE	NO.		
NO.	1	2	3 _	4	5	6	NO.	1	2	3	4	5	6
1	0.927	0.933	0.950	0.954	0.962	0.961	2	0.938	0.936	0.950	0.957	0.967	0.958
3	0.939	0.941	0.956	0.962	0.965	0.962	4	0.932	0.937	0.950	0.957	0.962	0.963
5	0.932	0.939	0.961	0.953	0.956	0.957	6	0.925	0.936	0.956	0.959	0.965	0.960
M _∞ =		1.75	_ α =		0.0	m _o /	$/m_{\infty} = .$	0.60	<u>6</u>]	Exit s	etting	=	_A
ē _{t≥′}	$/p_{t_{\infty}} =$	_0.91	<u>.5</u> ^m b:	$_{\rm L}/{\rm m}_{\infty}$ =	0.067	∆ _]	p _{t2} = .	0.12	0		p ₂ /p ₀	_∞ =	4.4
	/p _t =	_0.91	-5 ^m d: TUBE		0.067	[△]]	<u></u>	0.12		TUBE		» =	4.4
P _{tz}				NO.			RAKE		2	TUBE	NO.	» = 5	
RAKE	1	2	TUBE	NO.	5	6	RAKE NO.	1		TUBE	NO.	5	6
RAKE NO.	1	2 0.881	TUBE	NO. 4	5 0.949	6 0.950	RAKE NO.	1	2	TUBE 3 0.912	NO. 4	5 0.963	6 0.948
RAKE NO.	1 0.866 0.899	2 0.881 0.914	TUBE 3 0.925 0.939	NO. 4 0.959 0.930	5 0.949 0.915	6 0.950 0.900	RAKE NO. 2	1	2 0.874 0.895	TUBE 3 0.912 0.927	NO. 4 0.959 0.942	5 0.963 0.925	6 0.948 0.915
RAKE NO.	1 0.866 0.899	2 0.881 0.914 0.867	TUBE 3 0.925 0.939 0.901	NO. 4 0.959 0.930 0.953	5 0.949 0.915 0.962	6 0.950 0.900 0.954	RAKE NO. 2 4	1 0.855 0.867 0.852	2 0.874 0.895 0.874	TUBE 3 0.912 0.927 0.906	NO. 4 0.959 0.942 0.933	5 0.963 0.925 0.939	6 0.948 0.915 0.935
RAKE NO. 1 3 5 M _∞ =	1 0.866 0.899 0.856	2 0.881 0.914 0.867	TUBE 3 0.925 0.939 0.901 α =	NO. 4 0.959 0.930 0.953	5 0.949 0.915 0.962 0.0°	6 0.950 0.900 0.954 m _o /	RAKE NO. 2 4 6	1 0.855 0.867 0.852	2 0.874 0.895 0.874	TUBE 3 0.912 0.927 0.906	NO. 4 0.959 0.942 0.933 etting	5 0.963 0.925 0.939	6 0.948 0.915 0.935 B
RAKE NO. 1 3 5 M _∞ =	1 0.866 0.899 0.856	2 0.881 0.914 0.867	TUBE 3 0.925 0.939 0.901 α =	NO. 4 0.959 0.930 0.953	5 0.949 0.915 0.962 0.0°	6 0.950 0.900 0.954 m _o /	RAKE NO. 2 4 6	1 0.855 0.867 0.852	2 0.874 0.895 0.874	TUBE 3 0.912 0.927 0.906	NO. 4 0.959 0.942 0.933 etting P ₂ /P ₀	5 0.963 0.925 0.939	6 0.948 0.915 0.935 B
RAKE NO. 1 3 5 M _{\infty} =	1 0.866 0.899 0.856	2 0.881 0.914 0.867	TUBE 3 0.925 0.939 0.901 \[\alpha = \] \[m_b \]	NO. 4 0.959 0.930 0.953	5 0.949 0.915 0.962 0.0°	6 0.950 0.900 0.954 m _o /	RAKE NO. 2 4 6 /m _∞ = _	1 0.855 0.867 0.852	2 0.874 0.895 0.874	TUBE 3 0.912 0.927 0.906 Exit se	NO. 4 0.959 0.942 0.933 etting P ₂ /P ₀	5 0.963 0.925 0.939	6 0.948 0.915 0.935 B
RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$ RAKE	1 0.866 0.899 0.856	2 0.881 0.914 0.867 1.75 0.940	TUBE 3 0.925 0.939 0.901 α = 0 m _b : TUBE	NO. 4 0.959 0.930 0.953 1/m _{\infty} = NO. 4	5 0.949 0.915 0.962 0.0° 0.087	6 0.950 0.900 0.954 m _o /	RAKE NO. 2 4 6 /m _∞ =	1 0.855 0.867 0.852 	2 0.874 0.895 0.874 - F	TUBE 3 0.912 0.927 0.906 Exit se	NO. 4 0.959 0.942 0.933 etting P ₂ /P ₀ NO. 4	5 0.963 0.925 0.939 = = =	6 0.948 0.915 0.935 B 4.6
RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$ RAKE NO.	1 0.866 0.899 0.856 /pt =	2 0.881 0.914 0.867 1.75 0.940 2 0.945	TUBE 3 0.925 0.939 0.901 α = 0 m _b TUBE 3	NO. 4 0.959 0.930 0.953 1/m _∞ = NO. 4 0.935	5 0.949 0.915 0.962 0.0° 0.087 5 0.936	6 0.950 0.900 0.954 — m ₀ / Δ ₁ 6 0.925	RAKE NO. 2 4 6 /m _∞ = Pt ₂ = RAKE NO.	1 0.855 0.867 0.852 0.09	2 0.874 0.895 0.874 - F	TUBE 3 0.912 0.927 0.906 Exit se	NO. 4 0.959 0.942 0.933 etting P ₂ /P ₀ NO. 4 0.928	5 0.963 0.925 0.939 = 5 0.931	6 0.948 0.915 0.935 B 4.6 6 0.922

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t}}_{2}/{\rm p_{t_{\infty}}}$ - Continued

00	1.7	75	_ α =		0.0°	_ m _o /	/m _∞ =	0.606	5 :	Exit s	etting	=I	3
\overline{p}_{t_2}	$/p_{t_{\infty}} =$	0.91	19_ ^m b:	$_{\rm l}/{\rm m}_{\infty} =$	0.078	<u>β</u> Δ1	p _{t2} =	0.078	3		p ₂ /p	_∞ = <u>1</u>	··6
RAKE			TUBE	NO.	•		RAKE	1	,	TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.903	0.925	0.957	0.974	0.972	0.961	2	0.901	0.926	0.959	0.967	0.971	0.958
:	0.907	:	•	1	•	:	12	::	:	:	•	•	
	0.905												
$M_{\infty} =$		75	<u>α</u> =		0.0°	m _o /	$m_{\infty} = 1$	0.606	<u> </u>	Exit s	etting	=1	В
₽t2	/p _t =	0.92	<u>20</u> ^m b:	$_{ m l}/{ m m}_{\infty}=$	0.06	55 ∆ <u>r</u>	o _{t2} =	0.120	o		_ p ₂ /p	∞ =!	4.4
F	П					1	r	n					
NO.	 1	2	3	14	5	6	NO.	1	2	3	4	5	6
1	0.879	0.890	0.919	0.948	0.958	0.944	2	0.876	0.902	0.941	0.963	0.958	0.939
	0.908												
	0.864	i	ì	i	ì	1 1	i	ii	•	i -			
M _∞ =	1.5	7 5	<u> </u>		0.0°	m _o /	$m_{\infty} =$			Exit s	etting	=(<u> </u>
_													
p_{t_2}	$\sqrt{p^{t^{\infty}}} =$	0.941	± ^m b∶	$_{\rm l}/{\rm m}_{\infty} =$	0.079	9 △ <u>r</u>	p _{t2} =	0.0	52		_ p ₂ /p	_∞ =	4.7
1	11	_				,	ī			TUBE	NO.		
P _{t2}	11	_	TUBE			,	RAKE			TUBE	NO.		
RAKE NO.	11	2	TUBE 3	NO.	5	6	RAKE NO.	<u> </u>	2	TUBE 3	NO. 4	5	6
RAKE NO.	1	2 0 . 955	TUBE 3 0.939	NO. 4 0.936	5 0 . 936	6 0.926	RAKE NO.	1 0.972	2 0.965	TUBE 3 0.948	NO. 4 0.929	5 0.933	6
RAKE NO.	1 0.971	2 0.955 0.961	TUBE 3 0.939 0.946	NO. 4 0.936 0.934	5 0.936 0.934	6 0.926 0.930	RAKE NO. 2	1 0.972 0.964	2 0.965 0.956	TUBE 3 0.948 0.941	NO. 4 0.929 0.934	5 0.933 0.933	6 0.923 0.933
RAKE NO.	1 0.971 0.969	2 0.955 0.961 0.954	TUBE 3 0.939 0.946 0.940	NO. 4 0.936 0.934 0.938	5 0.936 0.934 0.936	6 0.926 0.930 0.932	RAKE NO. 2 4	1 0.972 0.964 0.964	2 0.965 0.956 0.951	TUBE 3 0.948 0.941 0.939	NO. 4 0.929 0.934 0.936	5 0.933 0.933 0.937	6 0.923 0.933 0.936
RAKE NO. 1 3 $M_{\infty} = 0$	1 0.971 0.969 0.967	2 0.955 0.961 0.954	TUBE 3 0.939 0.946 0.940 α =	NO. 14 0.936 0.934 0.938	5 0.936 0.934 0.936	6 0.926 0.930 0.932	RAKE NO. 2 4 6	1 0.972 0.964 0.964	2 0.965 0.956 0.951	TUBE 3 0.948 0.941 0.939 Exit s	NO. 4 0.929 0.934 0.936 etting	5 0.933 0.933 0.937 =	6 0.923 0.933 0.936
RAKE NO. 1 3 5 $M_{\infty} = \bar{P}_{t_2}$	1 0.971 0.969 0.967	2 0.955 0.961 0.954	TUBE 3 0.939 0.946 0.940 α =	NO. 4 0.936 0.934 0.938	5 0.936 0.934 0.936	6 0.926 0.930 0.932	RAKE NO. 2 4 6 /m _∞ =	1 0.972 0.964 0.964	2 0.965 0.956 0.951	TUBE 3 0.948 0.941 0.939 Exit s	NO. 4 0.929 0.934 0.936 etting p ₂ /p	5 0.933 0.933 0.937 =	6 0.923 0.933 0.936
RAKE NO. 1 3 5 $M_{\infty} =$	1 0.971 0.969 0.967	2 0.955 0.961 0.954	TUBE 3 0.939 0.946 0.940 \[\alpha = \frac{1}{47} \] \[\begin{array}{c} \text{T} \	NO. 4 0.936 0.934 0.938	5 0.936 0.934 0.936	6 0.926 0.930 0.932	RAKE NO. 2 4 6	1 0.972 0.964 0.964	2 0.965 0.956 0.951	TUBE 3 0.948 0.941 0.939 Exit s	NO. 4 0.929 0.934 0.936 etting p ₂ /p	5 0.933 0.933 0.937 =	6 0.923 0.933 0.936
RAKE NO. 1 3 5 $M_{\infty} = \bar{P}_{t_2}$ RAKE NO.	1 0.971 0.969 0.967 1.7 /pt _∞	2 0.955 0.961 0.954 75 0.9	TUBE 3 0.939 0.946 0.940 \[\alpha = \frac{1}{47} \] TUBE 3	NO. 14 0.936 0.934 0.938 1/m _{\infty} = NO. 4	5 0.936 0.934 0.936 0.0°	6 0.926 0.930 0.932	RAKE NO. 2 4 6 /m _∞ = RAKE NO.	1 0.972 0.964 0.606 0.086	2 0.965 0.956 0.951	TUBE 3 0.948 0.941 0.939 Exit s TUBE 3	NO. 4 0.929 0.934 0.936 etting p ₂ /p	5 0.933 0.937 =(=1	6 0.923 0.933 0.936
RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$ RAKE	1 0.971 0.969 0.967 1.7 /Pt _w	2 0.955 0.961 0.954 75 0.99	TUBE 3 0.939 0.946 0.940 \[\alpha = \frac{+7}{100} \] TUBE 3 0.956	NO. 4 0.936 0.934 0.938 1/m _{\infty} = NO. 4 0.975	5 0.936 0.934 0.936 0.0° 0.069	6 0.926 0.930 0.932	RAKE NO. 2 4 6 $m_{\infty} =$ RAKE NO. 2	1 0.972 0.964 0.606 0.606	2 0.965 0.956 0.951	TUBE 3 0.948 0.941 0.939 Exit s TUBE 3 0.956	NO. 4 0.929 0.934 0.936 etting P ₂ /P NO. 4 0.966	5 0.933 0.937 =	6 0.923 0.933 0.936 2 4.6 6 0.956

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

M _{co} =	<u> 1.7</u>	5	_ α =	0	.0°	m _C	/m _∞ =	<u>0.606</u>		Exit s	etting	; = <u>C</u>	
$\overline{\mathtt{p}}_{t_{z}}$	₂ /p _{t∞} =	0.91	.5 ^m b	1/m _∞ =	0.09	57_ A	p _{t2} =	0.128		<u> </u>	p ₂ /p	_∞ = <u>4</u> .	1
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2	3		5	6
1	0.852	0.873	0.907	0.942	0.951	0.955	2	0.856	0.887	0.924	0.953	0.961	0.951
3	0.853	0.883	0.916	0.958	0.963	0.953	4	0.848	0.869	0.909	0.949	0.952	0.954
5	0.847	0.869	0.902	0.939	0.951	0.954	77	13					0.963
M _∞ =	1.5	5	α =		.0°	m _o							1
$ar{p}_{ t z}$	$p_{t_{\infty}} =$	0.90	0m _b	$_{1}/m_{\infty}$ =	0.0	<u>76</u> △	$p_{t_2} =$	0.105			_ p ₂ /p	_∞ = _3.	.3
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	11	2	3	4	5	6
1	0.881	0.881	0.884	0.903	0.902	0.894	2	0.864	0.866	0.872	0.885	0.905	0.888
3	0.889	0.900	0.901	0.900	0.914	0.901	14	0.874	0.871	0.882	0.884	0.908	0.895
5	0.906	0.917	0.926	0.943	0.949	0.959	6				I	0.916	
M _∞ =	1.5	5	_ α =	0	.0°	m _O	_						
Ptz	/p _t _∞ =	0.981	m _b	l/m∞ =	0.091	<u>+</u>	p _{t2} = .	0.028			p ₂ /p _c	∞ = <u>3</u> .	7
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.987	0.987	0.984	0.978	0.978	0.968	2	0.990	0.987	0.991	0.971	0.979	0.963
3	0.991	0.989	0.984	0.981	0.981	0.976						0.977	
5	0.989	0.986	0.983	0.979	0.978	0.973						0.976	
M _∞ =	1.55	5	α =	0	.0°	m _o ,							
P _{t2}	$/p_{t_{\infty}} =$	0.961	mb	$L/m_{\infty} =$	0.067	Δ]	p _{t2} = _	0.075	· · · · · · · · · · · · · · · · · · ·		p ₂ /p ₀	。= <u>3.</u>	5
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	14	5	6
1	0.921	0.937	0.967	0.983	0.984	0.971	2	0.921	0.941	0.970	0.975	0.982	
3					0.985			- 1	- (0.985	
5					0.982		The state of the s					0.981	

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t}}_{2}/{\rm p_{t_{\infty}}}$ - Continued

$M_{\infty} =$	1.55	5	<u>α</u> =	0.	.0°	_ m _o /	′m _∞ =		1	Exit s	etting	= <u>B</u>	
$\overline{p}_{t_{\mathcal{Z}'}}$	$/p_{t_{\infty}} =$	0.899	<u>5</u> mb	$_{\rm L}/{\rm m}_{\infty} =$	0.071	<u>+</u> Δ <u>η</u>) _{t2} =	0.092	2		p ₂ /p ₀	∞ = <u>_3</u> .	<u>.3</u>
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
								0.872					
								0.864					
								0.883					
$M_{\infty} =$	1.55	5	_ α =	0.	.0°	m _o /	$m_{\infty} =$	0.540		Exit s	etting	= <u>B</u>	
₽t ₂	$/p_{t_{\infty}} =$	0.98	<u> </u>	$_{\rm l}/{\rm m}_{\infty} =$	0.08	<u>36</u> △1	Pt ₂ =	_0.030			p ₂ /p ₀	_∞ = _3	•7
RAKE			TUBE	NO.			RAKE		_	TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.983	0.985	0.982	0.979	0.978	0.967	2	0.987	0.986	0.991	0.972	0.979	0.961
[3]	0.990	0.989	0.985	0.982	0.983	0.977	4	0.982	0.981	0.984	0.978	0.978	0.977
_ 5	0.989	0.984	0.984	0.981	0.979	0.974	. 6	0.985	0.986	0.980	0.976	0.977	0.977
$M_{\infty} =$	1.55	<u> </u>	<u></u> α =	0.	0°	m _o /	$m_{\infty} =$	0.540		Exit s	etting	= <u>B</u>	
₱ _{t.2′}	$/_{\mathrm{Pt}_{\infty}} =$	0.956	5 ^m b:	$_{\rm l}/{\rm m}_{\infty} =$	0.0	071 ^Δ 1	o _{t2} =	0.068			p ₂ /p ₀	∞ = <u>3</u>	.5
RAKE			TUBE	NO.			RAKE	 1		TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2	3	4 _	5	6
1	0.926	0.926	0.952	0.980	0.980	0.963	2	0.923	0.930	0.951	0.964	0.973	0.957
7	7		7			: :		0.917		•			
5	0.922	0.922	0.956	0.982	0.980	0.976	6	0.918	0.923	0.941	0.981	0.982	0.981
$M_{\infty} = 1.55$ $\alpha = 0.0^{\circ}$ $m_{O}/m_{\infty} =$ Exit setting = C													
p̄ _{t2}	$/p_{t_{\infty}} =$	0 .894	<u>™</u> b∃	$L/m_{\infty} =$	0.0	<u>66</u> △1	pt ₂ =	0.101_			p ₂ /p ₀	_∞ = <u>3</u> .	•3
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	ı	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.870						2	0.857	0.872	0.879	0.884	0.894	0.879
i 1	0.862	i	1	ì		. H	-	0.870	0.878	0.902	0.887	0.897	0.895
5	0.895	0.914	0.938	0.947	0.944	0.902	6	0.897	0.912	0.918	0.914	0.905	0.914

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

$M_{\infty} =$	1.5	5	_ α =).0°	m _o	/m _∞ =	0.540		Exit s	etting	= _ C	;	
$\bar{p}_{t_2}/p_{t_\infty} = 0.977$ $m_{b1}/m_{\infty} = 0.077$ $\Delta p_{t_2} = 0.030$ $p_2/p_{\infty} = 3.7$											3.7			
RAKE	AKE TUBE NO.						RAKE	TUBE NO.						
NO.	1	2	3	14	5	6	NO.	1	2	3	4	5	6	
1	0.987	0.981	0.975	0.976	0.976	0.964	2	0.983	0.983	0.982	0.967	0.974	0.959	
3	0.987	0.985	0.977	0.979	0.980	0.976	4	0.979	0.976	0.975	0.974	0.975	0.975	
5	0.986	0.979	0.976	0.977	0.976	0.973		11	0.980			T		
$M_{\infty} = 1.55$ $\alpha = 0.0^{\circ}$ $m_{O}/m_{\infty} = 0.540$ Exit setting = C														
Pt2	$\bar{p}_{t_2}/p_{t_\infty} = 0.940 m_{bl}/m_\infty = 0.050 \Delta p_{t_2} = 0.112 p_2/p_\infty = 3.4$													
RAKE	CHIDE NO						RAKE	TUBE NO.						
NO.	1	2	3	4	5	6	NO.	1	2	3	14	5	6	
1	0.890	0.911	0.938	0.960	0.962	0.964	5	0.893	0.923	0.959	0.967	0.976	0.958	
	0.898		1			T	1		0.897			1		
5	0.882	0.910	0.941	0.965	0.973	0.974								
M ₀₀ =	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\mathtt{p}_{t_{2'}}$	$\bar{p}_{t_2}/p_{t_{\infty}} = 0.876 m_{b_1}/m_{\infty} = 0.111 \Delta p_{t_{\infty}}$,			
	^{/ FT} ∞	0.87	76 m _b :	$_{\rm l}/{\rm m}_{\infty} =$	0.1	<u>111</u> Δ	p _{t2} = .	0.140			p ₂ /p	_∞ = <u>30</u>		
RAKE	/ Ft∞	0.87	76 m _b :		0.1		1			TUBE		_∞ = <u>30</u>		
RAKE NO.				NO.		r	RAKE		2	TUBE	NO.).5	
NO.	1	2	TUBE	NO.	5	6	RAKE NO.	1	2	TUBE 3	NO.	5	6	
NO.		2 0 . 879	TUBE 3 0.875	NO. 4 0.907	5 0.907	6	RAKE NO.	1		TUBE 3 0.877	NO. 4	5 0.902	6	
NO. 1 3	1	2 0.879 0.878	TUBE 3 0.875 0.814	NO. 4 0.907 0.864	5 0.907 0.873	6 0.900 0.856	RAKE NO. 2	1 0.864 0.924	2	TUBE 3 0.877 0.822	NO. 4 0.900 0.805	5 0.902 0.802	6 0.916 0.804	
NO. 1 3 5	0.818 0.881 0.911	2 0.879 0.878 0.901	TUBE 3 0.875 0.814 0.909	NO. 4 0.907 0.864 0.870	5 0.907 0.873 0.885	6 0.900 0.856 0.877	RAKE NO. 2 4 6	1 0.864 0.924 0.898	2 0.904 0.848 0.898	TUBE 3 0.877 0.822 0.876	NO. 4 0.900 0.805 0.912	5 0.902 0.802 0.920	6 0.916 0.804	
NO. $ \begin{array}{c} 1 \\ 3 \\ 5 \\ M_{\infty} = \end{array} $	0.818 0.881 0.911 3.00	2 0.879 0.878 0.901	TUBE 3 0.875 0.814 0.909 α =	NO. 4 0.907 0.864 0.870	5 0.907 0.873 0.885	6 0.900 0.856 0.877 m _o /	RAKE NO. 2 4 6	1 0.864 0.924 0.898	2 0.904 0.848	TUBE 3 0.877 0.822 0.876	NO. 4 0.900 0.805 0.912	5 0.902 0.802 0.920	6 0.916 0.804	
NO. $ \begin{array}{c} 1 \\ 3 \\ 5 \\ M_{\infty} = \end{array} $	0.818 0.881 0.911	2 0.879 0.878 0.901	TUBE 3 0.875 0.814 0.909 α =	NO. 4 0.907 0.864 0.870	5 0.907 0.873 0.885	6 0.900 0.856 0.877 m _o /	RAKE NO. 2 4 6	1 0.864 0.924 0.898	2 0.904 0.848 0.898	TUBE 3 0.877 0.822 0.876	NO. 4 0.900 0.805 0.912 etting	5 0.902 0.802 0.920	6 0.916 0.804 0.876	
NO. $ \begin{array}{c} 1 \\ 3 \\ 5 \\ M_{\infty} = \end{array} $	0.818 0.881 0.911 3.00	2 0.879 0.878 0.901	TUBE 3 0.875 0.814 0.909 α =	NO. 4 0.907 0.864 0.870 2. $/m_{\infty} =$	5 0.907 0.873 0.885	6 0.900 0.856 0.877 m _o /	RAKE NO. 2 4 6	1 0.864 0.924 0.898	2 0.904 0.848 0.898	TUBE 3 0.877 0.822 0.876	NO. 4 0.900 0.805 0.912 etting P ₂ /P ₀	5 0.902 0.802 0.920 = B	6 0.916 0.804 0.876	
NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$	0.818 0.881 0.911 3.00	2 0.879 0.878 0.901	TUBE 3 0.875 0.814 0.909 $\alpha = \frac{m_{b0}}{}$	NO. 4 0.907 0.864 0.870 2. $/m_{\infty} =$	5 0.907 0.873 0.885	6 0.900 0.856 0.877 m _o /	RAKE NO. 2 4 6 /m _∞ = _	1 0.864 0.924 0.898	2 0.904 0.848 0.898	TUBE 3 0.877 0.822 0.876 Exit se	NO. 4 0.900 0.805 0.912 etting P ₂ /P ₀	5 0.902 0.802 0.920 = B	6 0.916 0.804 0.876	
NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$ RAKE NO.	1 0.818 0.881 0.911 3.00 /p _{t_w} =	2 0.879 0.878 0.901 0.886	TUBE 3 0.875 0.814 0.909 α =	NO. 4 0.907 0.864 0.870 2 . $1/m_{\infty} =$ NO. 4	5 0.907 0.873 0.885 0° 0.09	6 0.900 0.856 0.877 m _o /	RAKE NO. 2 4 6 $m_{\infty} =$ RAKE NO.	1 0.864 0.924 0.898	2 0.904 0.848 0.898	TUBE 3 0.877 0.822 0.876 Exit se	NO. 4 0.900 0.805 0.912 etting P ₂ /P ₀ NO. 4	5 0.902 0.802 0.920 = B = 30	6 0.916 0.804 0.876	
NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$ RAKE NO. 1	1 0.818 0.881 0.911 3.00 /p _{t_w} =	2 0.879 0.878 0.901 0.886	TUBE 3 0.875 0.814 0.909 \[\alpha = \text{mb1} \] TUBE 3 0.878	NO. 4 0.907 0.864 0.870 2. $/m_{\infty} =$ NO. 4 0.898	5 0.907 0.873 0.885 0° 0.09	6 0.900 0.856 0.877 m _o /	RAKE NO. 2 4 6 /m _∞ = _ Pt ₂ = _ RAKE NO.	1 0.864 0.924 0.898 0.108	2 0.904 0.848 0.898	TUBE 3 0.877 0.822 0.876 Exit se	NO. 4 0.900 0.805 0.912 etting P ₂ /P ₀ NO. 4 0.892	5 0.902 0.802 0.920 = B = 30	6 0.916 0.804 0.876	
NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$ RAKE NO. 1	1 0.818 0.881 0.911 3.00 /p _t =	2 0.879 0.878 0.901 0.886	TUBE 3 0.875 0.814 0.909 \[\alpha = \text{mb1} \] TUBE 3 0.878	NO. 4 0.907 0.864 0.870 2. $/m_{\infty} =$ NO. 4 0.898	5 0.907 0.873 0.885 0° 0.09	6 0.900 0.856 0.877 m _o /	RAKE NO. 2 4 6 /m _∞ = _ Pt ₂ = _ RAKE NO.	1 0.864 0.924 0.898 0.108	2 0.904 0.848 0.898	TUBE 3 0.877 0.822 0.876 Exit se	NO. 4 0.900 0.805 0.912 etting P ₂ /P ₀ NO. 4 0.892	5 0.902 0.802 0.920 = B = 30	6 0.916 0.804 0.876	

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

$M_{\infty} =$) 	<u>α</u> =	2	.0•	m _o ,	/m _∞ =		1	Exit s	etting	= <u>C</u>	
p _{t2}	$/p_{t_{\infty}} =$	0.875	m _b :	$_{1}/m_{\infty} =$	0.07	<u>7_</u> △1	9t2 = .	0.104			p ₂ /p ₀	_∞ = <u>29</u>	9.2
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	1)	1	2	3	4	5	6
1	0.829	0.864	0.850	0.886	0.879	0.856	2	0.858	0.875	0.862	0.865	0.866	0.868
3	0.880	0.887	0.901	0.881	0.884	0.906	4	0.900	0.887	0.902	0.867	0.869	0.862
5	0.843	0.896	0.888	0.881	0.889	0.920	6	0.852	0.863	0.842	0.888	0.894	0.849
M _∞ =	2.7	5	_ α =	2	.0°	m _{o/}	$m_{\infty} = 1$			Exit s	etting	= _A	
	,												
Pt₂⁄	$/p_{t_{\infty}} =$	0.92	<u>21</u> m _b :	$_{\rm l}/{\rm m}_{\infty} =$	0.12	<u>23</u> _ △Ţ)t ₂ = .	0.137			. p ₂ /p _c	× = 2]	-•5
RAKE			TUBE				RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	14	5	6
] 1	0.841	0.873	0.864	0.916	0.962	0.963	2	0.867	0.900	0.873	0.930	0.964	0.967
3	0.887	0.912	0.936	0.949	0.953	0.955	4	0.863	0.907	0.923	0.943	0.941	0.952
5	0.908	0.919	0.935	0.944	0.948	0.945	6	0.880	0.912	0.870	0.945	0.942	0.949
$M_{\infty} =$	2.75	5	_ α =	2	.0•	m _o /	$m_{\infty} = 1$]	Exit s	etting	= <u>B</u>	
<u></u>	/n	0.010	m	/m -	0.70	n ∧r		0 21.2			n /n		
Pt2'	/p _t =	0.919	"b]	1/™∞ =	0.108		t ₂ -	0.141		1.1.	. P ₂ /P ₀	× = _2	21.3
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	l	2	3	14	5	6
1	0.837	0.869	0.857	0.905	0.964	0.966	2	0.856	0.891	0.867	0.935	0.962	0.966
3	0.903	0.910	0.930	0.956	0.959	0.956	4	0.853	0.903	0.923	0.951	0.949	0.960
5	0.902	0.912	0.932	0.941	0.941	0.951	6	0.876	0.904	0.862	0.946	0.942	0.949
M _∞ =	2.75	5	α =	2.	0.	m _o /	′ _{m∞} = .		I	Exit s	etting	= C	
ē _{t2} ,	$/p_{t_{\infty}} =$	0.914	m _b _	$_{\rm L}/{\rm m}_{\infty}$ =	0.09	98 AI)t2 = .	0.150			p ₂ /p _c	_∞ = <u>2</u>]	L.O
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4.	5	6	NO.	1	2	3	4	5	6
1	0.828	0.860	0.846	0.910	0.964	0.965	2	0.848	0.884	0.865	0.944	0.959	0.966
Ī Š		000	000	2 252	ا مارم	051	1.				0.955		
3	0.891	0.898	0.911	0.953	0.942	U•954	4	h.0171	0.091	0.911	U•900	O•941	U•954 [

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

$M_{\infty} =$	2.50	···-	α =	2.	0°	m _o	/m _∞ =			Exit s	etting	= <u>A</u>	
\bar{p}_{t_2}	$/p_{t_{\infty}} =$	0.940	m _b	$_{1}/m_{\infty} =$	0.12	<u>o</u>	p _{t2} =	0.080			p ₂ /p	_∞ = <u>15</u>	.1
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.909	0.905	0.928	0.958	0.962	0.966	2	0.905	0.923	0.947	0.958	0.964	0.963
3	0.910	0.907	0.930	0.956	0.957	0.959	4	0.893	0.910	0.929	0.952	0.957	0.962
5	0.907	0.919	0.951	0.968	0.968	0.968	6	0.906	0.914	0.924	0.964	0.965	0.968
$M_{\infty} =$	2.50		<u></u> α =	2	.0°	m _o ,	$/m_{\infty} = .$			Exit s	etting	= <u>B</u>	
₽t _{2′}	$/p_{t_{\infty}} =$	0.937	m _b :	$L/m_{\infty} =$	0.108	^j	p _{t2} = !	0.128			_ p ₂ /p ₀	_∞ = <u>1</u>	5.0
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1	0.901	0.898	0.924	0.960	0.963	0.967	2	0.901	0.921	0.944	0.956	0.964	0.963
3	0.897	0.908	0.929	0.964	0.956	0.959	4	0.853	0.881	0.928	0.959	0.968	0.972
5	0.888	0 016	056	0.973	0.960	0.970	6	0.901	0.911	0.929	0.965	0.966	0.970
للنسا	0.000	0.910	0.500	0.213	0.700	V•21	لــــتــــــا	10.70-	0.7	10.757	0.707	10.700	<u> </u>
	2.50		$\alpha =$										
M _∞ =			_ α =	2.0) °	m _o /	/m _∞ = .		1	Exit s		= _C	
$M_{\infty} = \bar{p}_{t2'}$	2.50		_ α =	$\frac{2.0}{1/m_{\infty}} =$) °	m _o /	/m _∞ = .		1	Exit s	etting	= _C	
M _∞ =	2.50		$\alpha = \frac{m_{b}}{m_{b}}$	$\frac{2.0}{1/m_{\infty}} =$) °	m _o /	/m _∞ = .		1	Exit s	etting	= _C	
$M_{\infty} = \bar{p}_{t_{2'}}$ RAKE NO.	2.50 /p _{t_∞} =	0.929	$\alpha = \frac{m_{bl}}{TUBE}$	$\frac{2.0}{\sqrt{m_{\infty}}} = \frac{1}{\sqrt{m_{\infty}}}$ NO.	0.092 5	m _o , △₁	$m_{\infty} = \frac{1}{2}$	0.170	2	Exit s TUBE	P ₂ /P ₀	$= C$ $\infty = 14$.8
$M_{\infty} = \bar{p}_{t_{2'}}$ RAKE NO.	2.50 /p _{t_w} = 1 0.896	0.929 2 0.889	$\alpha = \frac{m_{bl}}{TUBE}$	2.0 $1/m_{\infty} = 0.961$	0.092 5 0.963		$m_{\infty} = \frac{1}{2}$ RAKE NO.	0.170	2 0.918	TUBE 3 0.951	P ₂ /P ₀ NO. 4 0.959	$= C$ $\infty = 14$ 0.958	.8 6 0.963
$M_{\infty} = \bar{p}_{t,2}$ RAKE NO.	2.50 /p _{t_w} = 1 0.896	0.929 2 0.889 0.898	$\alpha = \frac{m_{b1}}{1000}$ TUBE 3 0.925 0.899	2.0 $/m_{\infty} =$ NO. 4 0.961 0.958	0.092 5 0.963 0.921		$m_{\infty} = \frac{1}{2}$ RAKE NO.	1 0.893	2 0.918 0.846	TUBE 3 0.951 0.895	P ₂ /P ₀ NO. 4 0.959 0.951	$= \frac{C}{0.958}$ 0.972	.8 6 0.963 0.979
$M_{\infty} = \overline{p}_{t,2}$ RAKE NO. 1 3 5	2.50 /pt _w = 1 0.896 0.872	0.929 2 0.889 0.898	α =	2.0 $1/m_{\infty} =$ NO. 14 0.961 0.958 0.967	0.092 5 0.963 0.921 0.923	6 0.967 0.968	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4	1 0.893 0.821	2 0.918 0.846 0.912	TUBE 3 0.951 0.895 0.943	P ₂ /P ₀ NO. 4 0.959 0.951 0.967	= C = 14. 5 0.958 0.972 0.960	.8 6 0.963 0.979
$M_{\infty} = \overline{p}_{t,2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t,2}$	2.50 /pt _w = 1 0.896 0.872 0.863	0.929 2 0.889 0.898 0.897	$\alpha = \frac{m_{b1}}{TUBE}$ 3 0.925 0.899 0.943 $\alpha = \frac{m_{b1}}{TUBE}$	2.0 $/m_{\infty} =$ NO. 4 0.961 0.958 0.967	0.092 5 0.963 0.921 0.923	6 0.967 0.968 m _o /	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.170 1 0.893 0.821 0.895	2 0.918 0.846 0.912	TUBE 3 0.951 0.895 0.943	P ₂ /P ₀ NO. 4 0.959 0.951 0.967 etting	= C = 14. 5 0.958 0.972 0.960	.8 6 0.963 0.979
$M_{\infty} = \overline{p}_{t,2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t,2}$	2.50 /pt _w = 1 0.896 0.872 0.863	0.929 2 0.889 0.898 0.897	$\alpha = \frac{m_{b1}}{TUBE}$ 3 0.925 0.899 0.943 $\alpha = \frac{m_{b1}}{TUBE}$	2.0 $/m_{\infty} =$ NO. 4 0.961 0.958 0.967 2.0 $/m_{\infty} =$	0.092 5 0.963 0.921 0.923	6 0.967 0.968 m _o /	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.170 1 0.893 0.821 0.895	2 0.918 0.846 0.912	TUBE 3 0.951 0.895 0.943	etting p_2/p_0 NO. 4 0.959 0.951 0.967 etting p_2/p_0	$= \frac{C}{\infty} = \frac{14}{14}$ $\frac{5}{0.958}$ $\frac{0.972}{0.960}$ $= A$.8 6 0.963 0.979
$M_{\infty} = \overline{p}_{t2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t2}$	2.50 /pt _w = 1 0.896 0.872 0.863	0.929 2 0.889 0.898 0.897	$\alpha = \frac{m_{b1}}{TUBE}$ 3 0.925 0.899 0.943 $\alpha = \frac{m_{b1}}{TUBE}$	2.0 $/m_{\infty} =$ NO. 4 0.961 0.958 0.967 2.0 $/m_{\infty} =$	0.092 5 0.963 0.921 0.923	6 0.967 0.968 m _o /	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.170 1 0.893 0.821 0.895	2 0.918 0.846 0.912	TUBE 3 0.951 0.895 0.943 Exit se	etting p_2/p_0 NO. 4 0.959 0.951 0.967 etting p_2/p_0	$= \frac{C}{\infty} = \frac{14}{14}$ $\frac{5}{0.958}$ $\frac{0.972}{0.960}$ $= A$.8 6 0.963 0.979
$M_{\infty} = \overline{p}_{t2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t2}$ RAKE	2.50 /pt _w = 1 0.896 0.872 0.863 2.25 /pt _w =	2 0.889 0.898 0.897	$\alpha = \frac{m_{b1}}{TUBE}$ 3 0.925 0.899 0.943 $\alpha = \frac{m_{b1}}{TUBE}$	2.0 $/m_{\infty} =$ NO. 4 0.961 0.958 0.967 2.0 $/m_{\infty} =$ NO. 4	5 0.963 0.921 0.923 0.102	6 0.967 0.963 0.968 m _o /	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.170 1 0.893 0.821 0.895	2 0.918 0.846 0.912	TUBE 3 0.951 0.895 0.943 Exit se	etting p_{2}/p_{0} NO. 4 0.959 0.951 0.967 etting p_{2}/p_{0} NO. 4	= C = 14. 5 0.958 0.972 0.960 = A = 10	.8 6 0.963 0.979 0.971
$M_{\infty} = \overline{p}_{t2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t2}$ RAKE NO.	2.50 /pt _w = 1 0.896 0.872 0.863 2.25 /pt _w =	2 0.889 0.898 0.897 0.934 2 0.905	α =	2.0 $/m_{\infty} =$ NO. 4 0.961 0.958 0.967 2.0 $/m_{\infty} =$ NO. 4 0.945	0.092 5 0.963 0.921 0.923 0.102 5 0.948	6 0.967 0.963 0.968 m _o /	/m _∞ = Pt ₂ = RAKE NO 2	0.170 1 0.893 0.821 0.895 	2 0.918 0.846 0.912 I	TUBE 3 0.951 0.895 0.943 Exit se TUBE 3 0.933 0.932	P ₂ /P ₀ NO. 4 0.959 0.967 etting P ₂ /P ₀ NO. 4 0.935 0.966	= C = 14 5 0.958 0.972 0.960 = A 0 = 10 5 0.945 0.972	.8 6 0.963 0.979 0.971 0.0 6 0.956 0.972

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

$M_{\infty} =$	2	.25	_ α =		2.0°	m _o /	/m _∞ =		<u> </u>	Exit s	etting	=	В
\overline{p}_{t_2}	′p _{t∞} =	0.93	5 ^m b:	$_{\rm l}/{\rm m}_{\infty}$ =	0.097		p _{t2} =	0.12	22		p ₂ /p ₀	_∞ =	9.9
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.] 1	2	3	4	5	6
1 1	0.918	0.911	0.941	0.955	0.959	0.968	.2	0.909	0.914	0.937	0.956	0.960	0.965
3	0.889	0.912	0.929	0.957	0.959	0.958	4	0.854	0.877	0.919	0.949	0.954	0.955
								0.914					
$M_{\infty} = $	2	25	<u>α</u> =		2.0°	m _o /	$m_{\infty} =$		<u> </u>	Exit se	etting	=	C
₽t2/	, p _{t∞} =	0.921	<u>+ </u>	$1/m_{\infty} =$	0.082) _{t2} =	0.1	+7		. p ₂ /p	» =	9.7
RAKE						ı	ı	п —					
1 220	1	2	3	4	5	6	NO.	 1	2	3	4	5	6
1	0.908	0.899	0.940	0.953	0.956	0.965	2	0.897	0.911	0.934	0.954	0.961	0.963
3	0.859	0.881	0.878	0.948	0.935	0.962	4	0.829	0.843	0.876	0.926	0.942	0.960
5	0.869	0.892	0.926	0.953	0.937	0.961	6	0.900	0.919	0.953	0.954	0.956	0.960
$M_{\infty} =$	2	.00	_ α =		2.0°	m _o /	$m_{\infty} =$		<u> </u>	Exit se	etting	=	Α
	p+ =	० - ठउम	m _h .	1/m_ =	0.092	ο Δτ)+ <u> </u>	0.08	35		n /n	=	6.8
- UZ'						п	i	п –			2/ - 0	×	<u></u>
RAKE	ı		TUBE	NO.			RAKE			TUBE			
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
4 17	ī					: ::		0.886					
		The state of the s	i			: ::		0.895					
5	0.903	0.917	0.947	0.963	0.957	0.951	6	0.894	0.909	0.936	0.945	0.944	0 . 95 7
M_ =	2												
ω .		.00	- α =		2.0°	m _o /	$m_{\infty} =$		<u> </u>	Exit se	etting	=	В
		-						0.08					
		-		$_{\rm L}/{\rm m}_{\infty} =$			o _{t2} =				p ₂ /p _c		
		-	m _b :	$_{\rm L}/{\rm m}_{\infty} =$							p ₂ /p _c		
P _{t2} /	Pt _∞ =	0.934	TUBE	$1/m_{\infty} = \frac{NO}{4}$	0 •08 ¹	, ^ _I	Pt ₂ =	0.08	2	TUBE	P ₂ /P ₀	» =	6.7
P _{t2} /	Pt _w =	0.93 ⁴ 2 0.901	TUBE 3 0.937	$\frac{1}{m_{\infty}} = \frac{NO.}{4}$ 0.958	0.08 ¹ 5 0.963	, Δ _I	Pt ₂ = RAKE NO.	0.08	2 0.911	TUBE 3 0•943	P ₂ /P ₀ NO. 4 0.949	5 0.956	6.7 6 0.948

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

$M_{\infty} =$	2.0	00	_ α =	2	2.0°	m _o ,	/m _∞ = .]	Exit s	etting	=	·
p _{t2}	$/p_{t_{\infty}} =$	0.929	m _b	1/m _∞ =	0.0	<u>74</u> △	p _{t2} = .	0.11	<u> 17</u>		p ₂ /p ₀	∞ = <u> </u>	5,6
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	24	5	6
1	0.884	0.904	0.944	0.958	0.961	0.952	2	0.888	0.918	0.950	0.951	0.955	0.950
3	0.879	0.907	0.915	0.943	0.942	0.950	4	0.857	0.877	0.909	0.932	0.945	0.950
5	0.877	0.912	0.945	0.955	0.951	0.956	6	0.887	0.909	0.947	0.951	0.957	0.965
M _∞ =	1.7	7 5	_ α =	2	2.0	m _o ,	$m_{\infty} = 1$			Exit s	etting	=	<u> </u>
	/p _{t_∞} =	0.942	m _h	1/m _∞ =	0.080) Δ <u>1</u>)+	0.070)		p ₂ /p	= 1	+ . 6
L	- 000]	*****			×]
RAKE			TUBE	r			RAKE			TUBE	l	I _	{
NO.	1	2	3	14	5	6	NO.			i 1		5	
1	 		0.962			+		0.923				î	1
3	0.935	0.942	0.938	0.950	0.945	0.938		0.926					
5	0.925	0.939	0.957	0.956	0.940	0.932	6	0.906	0.926	0.948	0.954	0.961	0.959
$M_{\infty} =$		7 5	_ α =		2.0°	m _o /	$m_{\infty} = 1$		F	Exit se	etting	=	3
<u>-</u>	/p+ =	0.000	O m	/m -									
- 62	∞		H 1117	1/11/m =	072	△);	D+ _ =	0.078	3		p_p	= }	1 6
		0.930	5 "b.	1/111∞ = .	.072		Pt2 = .	0.078	3		p ₂ /p _c	∞ = <u> </u>	+.6
RAKE			TUBE		.072	\	RAKE	0.078	3	TUBE		× =}	+.6
RAKE NO.	1	2			. <u>07</u> 2 5	6		0.078	2			x =1	6
NO.	1 0.910	2	TUBE 3	NO.	5	6	RAKE NO.		2	TUBE	NO.	5	6
NO.	0.910	2 0 . 927	TUBE 3	NO. 4	5 0.968	6 0.956	RAKE NO.	1	2	TUBE 3 0.948	NO. 4 0.949	5	6 0•953
NO. 1 3	0.910	2 0.927 0.938	TUBE 3 0.957 0.942	NO. 4 0.971 0.953	5 0.968 0.938	6 0.956 0.926	RAKE NO. 2	1	2 0.935 0.931	TUBE 3 0.948 0.938	NO. 4 0.949 0.929	5 0.960 0.916	6 0.953 0.904
NO. 1 3 5	0.910	2 0.927 0.938 0.926	TUBE 3 0.957 0.942 0.952	NO. 4 0.971 0.953 0.958	5 0.968 0.938 0.940	6 0.956 0.926 0.929	RAKE NO. 2 4 6	1 0.917 0.915	2 0.935 0.931 0.923	TUBE 3 0.948 0.938 0.950	NO. 4 0.949 0.929 0.952	5 0.960 0.916 0.953	6 0.953 0.904 0.956
NO. $\frac{1}{3}$ $\frac{3}{5}$ $M_{\infty} =$	0.910 0.926 0.903	2 0.927 0.938 0.926	TUBE 3 0.957 0.942 0 952 α =	NO. 4 0.971 0.953 0.958	5 0.968 0.938 0.940	6 0.956 0.926 0.929	RAKE NO. 2 4 6	1 0.917 0.915 0.898	2 0.935 0.931 0.923	TUBE 3 0.948 0.938 0.950	NO. 4 0.949 0.929 0.952 etting	5 0.960 0.916 0.953	6 0.953 0.904 0.956
NO. $ \begin{array}{c} 1 \\ 3 \\ 5 \end{array} $ $ M_{\infty} = \overline{p}_{t_2} / a_{t_2} / a_{t_2}$	0.910 0.926 0.903	2 0.927 0.938 0.926	TUBE 3 0.957 0.942 0.952 \[\alpha = \] \[\begin{array}{c} \mathred{m} \text{b} \end{array}	NO. 4 0.971 0.953 0.958 /m _∞ =	5 0.968 0.938 0.940	6 0.956 0.926 0.929	RAKE NO. 2 4 6 /m_{\infty} =	1 0.917 0.915 0.898	2 0.935 0.931 0.923	TUBE 3 0.948 0.938 0.950 Exit se	NO. 4 0.949 0.929 0.952 etting P ₂ /P	5 0.960 0.916 0.953	6 0.953 0.904 0.956
NO. $\frac{1}{3}$ $\frac{3}{5}$ $M_{\infty} =$	0.910 0.926 0.903	2 0.927 0.938 0.926	TUBE 3 0.957 0.942 0 952 α =	NO. 4 0.971 0.953 0.958 /m _∞ =	5 0.968 0.938 0.940	6 0.956 0.926 0.929	RAKE NO. 2 4 6	1 0.917 0.915 0.898	2 0.935 0.931 0.923	TUBE 3 0.948 0.938 0.950 Exit se	NO. 4 0.949 0.929 0.952 etting P ₂ /P	5 0.960 0.916 0.953	6 0.953 0.904 0.956
NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$ RAKE NO.	0.910 0.926 0.903 1.7 /p _t =	2 0.927 0.938 0.926 75 0.931	TUBE 3 0.957 0.942 0 952 α = 1 mb TUBE 3	NO. 4 0.971 0.953 0.958 /m _{\infty} = NO. 4	5 0.968 0.938 0.940 2.0° 0.071	6 0.956 0.926 0.929 m _{o/}	RAKE NO. 2 4 6 $m_{\infty} = 0$ RAKE NO.	1 0.917 0.915 0.898	2 0.935 0.931 0.923	TUBE 3 0.948 0.938 0.950 Exit se	NO. 4 0.949 0.929 0.952 etting p ₂ /p ₀ NO. 4	5 0.960 0.916 0.953 =	6 0.953 0.904 0.956
NO. 1 3 5 $M_{\infty} = \bar{p}_{t2}$ RAKE NO. 1	0.910 0.926 0.903 1.7 /p _{t_w} =	2 0.927 0.938 0.926 75 0.931	TUBE 3 0.957 0.942 0 952	NO. 4 0.971 0.953 0.958 2 2 2 2 2 3 4 0.926	5 0.968 0.938 0.940 2.0° 0.071	6 0.956 0.926 0.929 m _{o/} Δ _I	RAKE NO. 2 4 6 $m_{\infty} = 0$ RAKE NO. 2	1 0.917 0.915 0.898 	2 0.935 0.931 0.923 F	TUBE 3 0.948 0.938 0.950 Exit se	NO. 4 0.949 0.929 0.952 etting P ₂ /P ₀ NO. 4 0.921	5 0.960 0.916 0.953 =	6 0.953 0.904 0.956 5

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t}}_2/{\rm p_{t_{\infty}}}$ - Continued

M _∞ =	1.	55	_ α =	:	2.0°	_ m _o /	′m _∞ = .		F	Exit se	etting	=	<u>A</u>
P _{t2} /	$/p_{t_{\infty}} =$	0.966	mb	$L/m_{\infty} =$	0.088		o _{t2} = _	0.05	2		p ₂ /p ₀	» =	3.6
RAKE			TUBE	NO.			RAKE			TUBE			
NO.	1	2	3	4	5	6	NO.	1	2	3	4	5	6
1 1	0.992	0.980	0.971	0.969	0.970	0.949	2	0.992	0.978	0.964	0.954	0.966	0.942
3	0.970	0.965	0.963	0.967	0.971	0.969	4	0.949	0.954	0.961	0.968	0.970	0.971
5	0.963	0.962	0.964	0.968	0.968	0.966	6_	0.973	0.968	0.961	0.964	0.967	0.968
												=	
₽t ₂ /	$/p_{t_{\infty}} =$	0.965	<u></u> m _b :	$_{\rm L}/{\rm m}_{\infty} =$	0.082	<u> Δ</u>) _{t2} =	0.07	'1		p ₂ /p	» = »	3.6
RAKE			TUBE	NO.			DAVE			TUBE	NO.		
NO.	1	2	3	4	5	6	NO.	1	2	3	14	5	6
1 1	0.983	0.978	0.975	0.970	0.971	0.953	2	0.992	0.971	0.923	0.950	0.967	0.947
3												0.970	
5	0.966	0.961	0.964	0.969	0.969	0.967	6	0.978	0.969	0.962	0.965	0.968	0.970
												=	
₽ _{t2} ′	/p _t , =	0.967	m _b :	$L/m_{\infty} =$	0.073	3 ^r	ot2 = .	0.01	+ 5		p ₂ /p ₀	» =	3.6
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.			· .			6
1 1	000					ļ ļ		1	2	3	4	5	
	○•ㅋㅋ△	0.980	0.971	0.970		, ,		# 1		4			
3	0.970	0.980 0.964	0.971 0.965	0.970 0.968	0.971	0.955	2	0.990	0.977	0.964	0.957	5 0.967 0.971	0.949
	0.970	0.964	0.965	0.968	0.971 0.972	0.955 0.970	2 4	0.990 0.950	0.977 0.948	0.964 0.964	0.957 0.970	0.967	0.949
5	0.970 0.963	0.964 0.959	0.965 0.964	0.968 0.969	0.971 0.972 0.970	0.955 0.970 0.967	2 4 6	0.990 0.950	0.977 0.948 0.967	0.964 0.964 0.962	0.957 0.970 0.965	0.967 0.971 0.968	0.949
5 M _∞ =	0.970 0.963 3.	0.964 0.959 .00	0.965 0.964 α =	0.968 0.969	0.971 0.972 0.970 5.0°	0.955 0.970 0.967 m _o /	2 4 6 /m _∞ =	0.990 0.950 0.978	0.977 0.948 0.967	0.964 0.964 0.962 Exit se	0.957 0.970 0.965 etting	0.967 0.971 0.968	0.949 0.972 0.970
5 M _∞ =	0.970 0.963 3.	0.964 0.959 .00	0.965 0.964 α =	0.968 0.969 1/m _∞ =	0.971 0.972 0.970 5.0°	0.955 0.970 0.967 m _o /	2 4 6 /m _∞ = _	0.990 0.950 0.978	0.977 0.948 0.967	0.964 0.964 0.962 Exit se	0.957 0.970 0.965 etting P ₂ /P ₀	0.967 0.971 0.968	0.949 0.972 0.970
$M_{\infty} = \bar{P}_{t_2}$	0.970 0.963 3.	0.964 0.959 .00	0.965 0.964 α =	0.968 0.969 1/m _∞ =	0.971 0.972 0.970 5.0°	0.955 0.970 0.967 m _o /	2 4 6 /m _∞ =	0.990 0.950 0.978	0.977 0.948 0.967	0.964 0.964 0.962 Exit se	0.957 0.970 0.965 etting P ₂ /P ₀	0.967 0.971 0.968	0.949 0.972 0.970
$M_{\infty} = \frac{1}{P_{t2}}$ RAKE	0.970 0.963 3. /p _t =	0.964 0.959 .00 	0.965 0.964 — α = — ^m b: TUBE	0.968 0.969 L/m _∞ = NO.	0.971 0.972 0.970 5.0° 0.098	0.955 0.970 0.967 — ^m o/	$ \begin{array}{c} 2 \\ 4 \\ 6 \end{array} $ $ \begin{array}{c} m_{\infty} = \\ p_{t_{2}} = \\ \end{array} $ RAKE	0.990	0.977 0.948 0.967 1	0.964 0.964 0.962 Exit se	0.957 0.970 0.965 etting P ₂ /P ₀ NO.	0.967 0.971 0.968 =	0.949 0.972 0.970 A 29.6
$M_{\infty} = \frac{1}{p_{t,2}}$	0.970 0.963 3. /p _t = 1 0.803 0.767	0.964 0.959 .00 0.830 2 0.820 0.785	0.965 0.964 — α = Σ TUBE 3 0.838 0.766	0.968 0.969 1/m _{\infty} = NO. 4 0.879 0.843	0.971 0.972 0.970 5.0° 0.098 5 0.904 0.833	0.955 0.970 0.967 m _o / 3	2 4 6 $m_{\infty} =$ $2t_{2} =$ $RAKE$ $NO.$ 2 4	0.990 0.950 0.978 0.20 1 0.833	0.977 0.948 0.967 0.1 2 0.855 0.782	0.964 0.962 0.962 Exit se TUBE 3 0.883	0.957 0.970 0.965 etting P ₂ /P ₀ NO. 4 0.861	0.967 0.971 0.968 =	0.949 0.972 0.970 A 29.6 6 0.904 0.762

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

M _∞ =	= <u>3.</u>	00	_ α =	·	5.0°	m _o	$/m_{\infty} =$			Exit s	etting	; =	В
$ar{\mathtt{p}}_{\mathtt{t}_z}$	$_{2}/p_{t_{\infty}}=$	<u>0.833</u>	m _b	1/m _∞ =	0.098	Δ	p _{t2} =	0.	255		p ₂ /p) _∞ =	28.5
RAKE NO.	0.812 0.719	0.824	0.844 0.787	0.889 0.829	0.864	0.904	14 ■ 5	0.773 0.720	0.813	0.872	0.922	0.851	0.899
				-	-	-	_		-	-	-		-
$ar{ exttt{p}}_{ exttt{t}_2}$	$p_{t_{\infty}} =$	0.812	2 <u>m</u> b	$_1/m_\infty =$	0.07	7 ^	Pt2 =	0.30	4		p ₂ /p	_∞ =	27.9
RAKE NO.		0.810	0.830	0.888	0.893	0.913	5	1 0.732 0.682	0.762	0.841	0.919	0.914	0.914
5 M -				_	_	_		0.737 				_	0.919
								0,160					
RAKE NO.				. -									
 	1	1	Ī	1.		1 -	ĪĪ	1	Ì	Ī	ĺ	i	i i
1 3	0.849	0.855 0.830	0.880 0.854	0.906 0.875	0.910 0.875	0.914 0.873	2 4	0.845 0.800	0.868 0.818	0.901 0.854	0.923 0.877	0.910	0.939 0.889
1 3 5	0.849 0.806 0.805	0.855 0.830 0.828	0.880 0.854 0.862	0.906 0.875 0.876	0.910 0.875 0.877	0.914 0.873 0.879	2 4 6	0.845 0.800 0.840	0.868 0.818 0.856	0.901 0.854 0.896	0.923 0.877 0.930	0.910 0.889 0.934	0.939 0.889 0.931
1 3 5 M _∞ =	0.849 0.806 0.805	0.855 0.830 0.828	0.880 0.854 0.862 α =	0.906 0.875 0.876	0.910 0.875 0.877 5.0°	0.914 0.873 0.879 m _o ,	$\begin{bmatrix} 2\\ 4\\ 6 \end{bmatrix}$	0.845 0.800	0.868 0.818 0.856	0.901 0.854 0.896	0.923 0.877 0.930 etting	0.910 0.889 0.934	0.939 0.889 0.931
1 3 5 M _∞ =	0.849 0.806 0.805	0.855 0.830 0.828	0.880 0.854 0.862 α =	0.906 0.875 0.876 	0.910 0.875 0.877 5.0°	0.914 0.873 0.879 m _o	$\begin{bmatrix} 2\\ 4\\ 6 \end{bmatrix}$	0.845 0.800 0.840 	0.868 0.818 0.856	0.901 0.854 0.896	0.923 0.877 0.930 etting	0.910 0.889 0.934 =1	0.939 0.889 0.931
$\begin{array}{c} 1 \\ 3 \\ 5 \\ M_{\infty} = \\ \overline{p}_{t_2} \\ \end{array}$ RAKE	0.849 0.806 0.805 /Pt _w =	0.855 0.830 0.828 75 0.852 2	0.880 0.854 0.862 α = 2 ^m b TUBE 3 0.875	0.906 0.875 0.876 	0.910 0.875 0.877 5.0° 0.105	0.914 0.873 0.879 m _o Δ1	$ \begin{array}{c} 2 \\ 4 \\ 6 \end{array} $ $ \begin{array}{c} \text{Mo.} \\ \text{RAKE} \\ \text{NO.} \\ \end{array} $	0.845 0.800 0.840 	0.868 0.818 0.856 2 2	0.901 0.854 0.896 Exit s TUBE 3 0.889	0.923 0.877 0.930 etting P ₂ /P ₀ NO.	0.910 0.889 0.934 =1 \infty = _2	0.939 0.889 0.931 3 20.1 6 0.907

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t}}_2/{\rm p_{t_{\infty}}}$ - Continued

$M_{\infty} =$	2.	7 5	<u>α</u> =	5.	0°	_ m _o ,	/m _∞ =			Exit s	etting	=	C
\bar{p}_{t_2}	/p _{t∞} =	0.83	37 ^m b	$_{\rm l}/{\rm m}_{\infty}$ =	0.08	36_ ^1	p _{t2} = .	0.2	262		p ₂ /p ₀	_∞ =	19.6
RAKE NO.	1 0.838							1					6
3	0.718 0.726	0.736	0.777	0.819	0.864	0.878	14	0.715	0.735	0.771	0.828	0.868	0.891
• –	= 2	•				•	-	_			settin	•	
	⁹ t ∞ —	0.880	. ^m bl/	′m _∞ = _	0.118	_ ^pt	2 = (0.175	- -		p ₂ /p _∞	= 14.2	2
RAKE NO.	1	2	TUBE 3	NO	5	6	RAKE NO.	1.	2	TUBE 3		5	6
į į	0.868	0.864	0.898	0.908	0.914	i i	i	i	0.891	0.926	0.935	0.898	0.936
5	0.817 0.819	0.829	0.856	0.883	0.896	0.892	6		0.880	0.907	0.946	0.902	0.947
	2.5	0	<u></u> α =	5.0	•	m _o /	$m_{\infty} = 1$		·	Exit s	etting	=	В
				,							,		
	/p _{t∞} =	0.86			0.1	05 ^Δ 1	I	0.2	15			» =	14.0_
Pt ₂ RAKE			TUBE	NO.		05 Δ ₁	RAKE	0.2		TUBE	NO.		
RAKE NO.	1	2	TUBE 3 0.890	NO. 4 0.909	5 0.917	6	RAKE NO.	1 0.851	2 0 . 870	TUBE 3	NO. 4	5	6 0.942
RAKE NO.	1	2 0.855 0.795	TUBE 3 0.890 0.809	NO. 4 0.909 0.844	5 0.917 0.869	6 0.924 0.882	RAKE NO. 2	1	2 0.870 0.776	TUBE 3 0.914 0.804	NO. 4 0.932 0.842	5 0.901 0.876	6 0.942 0.889
RAKE NO. 1 3 5 $M_{\infty} =$	1 0.860 0.782 0.783 2.5	2 0.855 0.795 0.793	TUBE 3 0.890 0.809 0.820 α =	NO. 4 0.909 0.844 0.854	5 0.917 0.869 0.881	6 0.924 0.882 0.904	RAKE NO. 2 4 6	1 0.851 0.761 0.844	2 0.870 0.776 0.861	TUBE 3 0.914 0.804 0.905	NO. 4 0.932 0.842 0.947 etting	5 0.901 0.876 0.918	6 0.942 0.889 0.929
RAKE NO. 1 3 5 $M_{\infty} =$	1 0.860 0.782 0.783	2 0.855 0.795 0.793	TUBE 3 0.890 0.809 0.820 α =	NO. 4 0.909 0.844 0.854 5	5 0.917 0.869 0.881	6 0.924 0.882 0.904	RAKE NO. 2 4 6	1 0.851 0.761 0.844	2 0.870 0.776 0.861	TUBE 3 0.914 0.804 0.905 Exit s	NO. 4 0.932 0.842 0.947 etting P ₂ /P ₀	5 0.901 0.876 0.918	6 0.942 0.889 0.929
RAKE NO. 1 3 5 $M_{\infty} =$	1 0.860 0.782 0.783 2.5	2 0.855 0.795 0.793	TUBE 3 0.890 0.809 0.820 α =	NO. 4 0.909 0.844 0.854 5	5 0.917 0.869 0.881	6 0.924 0.882 0.904	RAKE NO. 2 4 6	1 0.851 0.761 0.844	2 0.870 0.776 0.861	TUBE 3 0.914 0.804 0.905	NO. 4 0.932 0.842 0.947 etting P ₂ /P ₀	5 0.901 0.876 0.918	6 0.942 0.889 0.929
RAKE NO. 1 3 5 $M_{\infty} = \bar{p}_{t,2}$ RAKE	1 0.860 0.782 0.783 2.5 /Pt _w =	2 0.855 0.795 0.793 0 0.8	TUBE 3 0.890 0.809 0.820 \[\alpha = \frac{46}{1000} \] TUBE 3 0.879	NO. 4 0.909 0.844 0.854 5. 1/m _{\infty} =	5 0.917 0.869 0.881 0° 0.0	6 0.924 0.882 0.904	RAKE NO. 2 4 6 $m_{\infty} =$ Pt ₂ = RAKE	1 0.851 0.761 0.844 0.26	2 0.870 0.776 0.861 4 2	TUBE 3 0.914 0.804 0.905 Exit s TUBE 3 0.901	NO. 4 0.932 0.842 0.947 etting P ₂ /P ₀ NO. 4 0.929	5 0.901 0.876 0.918 = = 1	6 0.942 0.889 0.929 C 3.6 6

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

M _{co} =	2.2	25	<u>α</u> =	5.	0°	m _o	/m _∞ =			Exit s	etting	=	<u>A</u>
$\overline{\mathtt{p}}_{t_{z}}$	$p_{t_{\infty}} =$	0.86	58 m _b	$_1/m_\infty =$	0.08	36 <u>Δ</u>	p _{t2} =	0.1	95		p ₂ /p	_∞ = <u>5</u>	5.0
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2	3	14	5	6
1	0.882	0.900	0.917	0.904	0.900	0.938	2	0.841	0.878	0.917	0.946	0.901	0.935
	0.808		<u> </u>	1	T	ī — ~	î	II	ĩ "	1	_	1	1 1
5	0.826	0.818	0.835	0.854	0.863	0.865	6	0.876	0.919	0.936	0.922	0.903	0.910
M _∞ =	2.2	25	_ α =	5.0) °	m _O ,	$m_{\infty} = 1$			Exit s	etting	=	3
₽t2	/p _{t∞} =	0.877	m _b	$_{ m L}/{\rm m}_{\infty}$ =	0.08	87 _ ∆j	Pt2 = .	0.16	52		p ₂ /p ₀	∞ =	9.2
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6		1	2	3	4	5	6
1	0.889	0.888	0.918	0.924	0.926	0.931	2	0.886	0.906	0.916	0.922	0.910	0.928
3	0.833	0.817	0.834	0.836	0.856	0.856	4	0.793	0.803	0.826	0.853	0.874	0.878
5	0.829	0.825	0.842	0.855	0.871	0.884	6	0.870	0.896	0.930	0.932	0.908	0.935
	0.027	0.027	0.012	U-022	I - : . <u>: .</u> ! —	1			L		I > 2	1	Tari Sasa
	2.25	<u> </u>									•	• -	
M _∞ =	2.25	5	_ α =	5.0) °	m _O /	$m_{\infty} = 1$]	Exit s	etting	=(<u> </u>
M _∞ =	<u> </u>	5	_ α =	5.0) °	m _O /	$m_{\infty} = 1$]	Exit s	etting	=(<u> </u>
M _∞ =	2.25	5	$\alpha = \frac{\alpha}{m_{b}}$	5.0) °	m _O /	$m_{\infty} = 1$	0.3	198	Exit s	etting p ₂ /p ₀ NO.	= (9.0
$M_{\infty} = \bar{p}_{t_2}$	2.25	5	α = 'mbi	5.0 l/m _∞ =	0.07	m _{o/}	$m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.3]	Exit s	etting p ₂ /p ₀ NO.	= (9.0
$M_{\infty} = \bar{p}_{t_2}$		0.867	α = 'mbi	$\frac{5.0}{1/m_{\infty}} = \frac{NO.}{4}$	0.07	m _o , 73 Δ ₁	$m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.1	1 198 2	Exit s	etting p ₂ /p ₀ NO.	= (9.0
$M_{\infty} = \bar{p}_{t_2}$ RAKE NO.	2.29 /pt _w =	0.867 2 0.885	$\alpha = \frac{1}{2} m_{b}$ TUBE	5.0 1/m _∞ = NO. 4 0.918	0.07 5 0.922	m _ο , 73 Δ ₁ 6 0.927	$m_{\infty} = \frac{1}{2}$ RAKE NO.	0.1	2 0.907	TUBE 3 0.910	p ₂ /p ₀ NO. 4 0.914	=(_x =9 5 0.898	6 0.926
$M_{\infty} = \frac{\bar{p}_{t2}}{\bar{p}_{t2}}$ RAKE NO.	2.29 /pt _w =	0.867 2 0.885 0.800	α = TUBE 3 0.916 0.807	5.0 $1/m_{\infty} =$ NO. 14 0.918 0.832	0.07 5 0.922 0.852	m _o , 73 △₁ 6 0.927 0.872	$m_{\infty} = \frac{1}{2}$ RAKE NO.	0.1 1 0.884 0.762	2 0.907 0.776	TUBE 3 0.910 0.801	P ₂ /P ₀ NO. 4 0.914 0.826	= (6 0.926 0.865
$M_{\infty} = \frac{\bar{p}_{t_2}}{\bar{p}_{t_2}}$ RAKE NO.	2.29 /pt _w = 1 0.876 0.808	0.867 2 0.885 0.800	α = TUBE 3 0.916 0.807	5.0 $1/m_{\infty} =$ NO. 4 0.918 0.832 0.842	0.07 5 0.922 0.852 0.868	m _o , 73 Δ ₁ 6 0.927 0.872	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4	0.1 1 0.884 0.762 0.865	2 0.907 0.776 0.897	TUBE 3 0.910 0.801 0.928	P ₂ /P ₀ NO. 4 0.914 0.826 0.930	= (0 = 9 = 9 5 0.898 0.881	6 0.926 0.865 0.934
$M_{\infty} = \frac{\bar{p}_{t_2}}{\bar{p}_{t_2}}$ RAKE NO. 1 3 5 $M_{\infty} = \frac{1}{2}$	2.29 /pt _∞ = 1 0.876 0.808 0.808	0.867 2 0.885 0.800 0.802	$\alpha = \frac{1}{2} \alpha = $	5.0 $1/m_{\infty} =$ NO. 4 0.918 0.832 0.842	0.07 5 0.922 0.852 0.868	m _o , 73 Δ ₁ 6 0.927 0.872 0.887	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.1 1 0.884 0.762 0.865	2 0.907 0.776 0.897	TUBE 3 0.910 0.801 0.928	P ₂ /P ₀ NO. 4 0.914 0.826 0.930 etting	= (0 = 9 = 9 5 0.898 0.881	6 0.926 0.865 0.934
$M_{\infty} = \frac{\bar{p}_{t_2}}{\bar{p}_{t_2}}$ RAKE NO. 1 3 5 $M_{\infty} = \frac{1}{2}$	2.29 /pt_w = 1 0.876 0.808 0.808	0.867 2 0.885 0.800 0.802	$\alpha = \frac{1}{2} \alpha = $	5.0 $1/m_{\infty} =$ NO. 4 0.918 0.832 0.842 5.0 $1/m_{\infty} =$	0.07 5 0.922 0.852 0.868	m _o , 73 Δ ₁ 6 0.927 0.872 0.887	$m_{\infty} = \frac{1}{2}$ RAKE NO. $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.1 1 0.884 0.762 0.865	2 0.907 0.776 0.897	TUBE 3 0.910 0.801 0.928	etting p_{2}/p_{0} NO. 4 0.914 0.826 0.930 etting p_{2}/p_{0}	= (0.898) 0.898 0.859 0.881	6 0.926 0.865 0.934
$M_{\infty} = \overline{p}_{t_2}$ RAKE NO. 1 3 5 $M_{\infty} = \overline{p}_{t_2}$	2.29 /pt_w = 1 0.876 0.808 0.808	0.867 2 0.885 0.800 0.802	$\alpha = \frac{1}{2} \alpha = $	5.0 $1/m_{\infty} =$ NO. 4 0.918 0.832 0.842 5.0 $1/m_{\infty} =$	0.07 5 0.922 0.852 0.868	m _o , 73 Δ ₁ 6 0.927 0.872 0.887	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$	0.1 1 0.884 0.762 0.865	2 0.907 0.776 0.897	TUBE 3 0.910 0.801 0.928 Exit so	etting p_{2}/p_{0} NO. 4 0.914 0.826 0.930 etting p_{2}/p_{0}	= (0.898) 0.898 0.859 0.881	6 0.926 0.865 0.934
$M_{\infty} = \frac{\bar{p}_{t2}}{\bar{p}_{t2}}$ RAKE NO. 1 3 5 $M_{\infty} = \frac{\bar{p}_{t2}}{\bar{p}_{t2}}$	2.29 /pt _w = 1 0.876 0.808 0.808 2.00 /pt _w =	2 0.885 0.800 0.802 0.888	$\alpha = \frac{\alpha}{1000}$ TUBE 3 0.916 0.807 0.820 $\alpha = \frac{1000}{1000}$ TUBE 3 0.937	5.0 $1/m_{\infty} =$ NO. 4 0.918 0.832 0.842 $/m_{\infty} =$ NO. 4 0.940	0.07 5 0.922 0.852 0.868 0.09	m _o , (3 Δ ₁ 6 0.927 0.887 m _o , Δ ₁ 6 0.889	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.1 0.884 0.762 0.865 	2 0.907 0.776 0.897	TUBE 3 0.910 0.801 0.928 Exit so TUBE 3 0.838	etting p_{2}/p_{0} NO. 4 0.914 0.826 0.930 etting p_{2}/p_{0} NO. 4 0.833	=	6 0.926 0.865 0.934 6.4 6
$M_{\infty} = \frac{\bar{p}_{t2}}{\bar{p}_{t2}}$ RAKE NO. 1 3 5 $M_{\infty} = \frac{\bar{p}_{t2}}{\bar{p}_{t2}}$ RAKE NO.	2.29 /pt _w = 1 0.876 0.808 0.808 2.00 /pt _w =	2 0.885 0.800 0.802 0.888	α = 7	5.0 $1/m_{\infty} =$ NO. 4 0.918 0.832 0.842 $/m_{\infty} =$ NO. 4 0.940	0.07 5 0.922 0.852 0.868 0.09	m _o , (3 Δ ₁ 6 0.927 0.887 m _o , Δ ₁ 6 0.889	$m_{\infty} = \frac{1}{2}$ RAKE NO. 2 4 6 $m_{\infty} = \frac{1}{2}$ RAKE NO.	0.1 0.884 0.762 0.865 	2 0.907 0.776 0.897	TUBE 3 0.910 0.801 0.928 Exit so TUBE 3 0.838	etting p_{2}/p_{0} NO. 4 0.914 0.826 0.930 etting p_{2}/p_{0} NO. 4 0.833	=	6 0.926 0.865 0.934 6.4 6

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Continued

$M_{\infty} =$	2.	00	<u>α</u> =	5	.0°	_ ^m o/	/m _∞ = .		I	Exit se	etting	=	В
$ar{p}_{ ext{t}_2}$	/p _{t∞} =	0.88	<u>2</u> mb:	$_{\rm L}/{\rm m}_{\infty} =$	_0.08	3 _ ^I	p _{t2} = _	0.15	5		p ₂ /p _c	× =	6.3
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2	3	14	5	6
1	0.898	0.913	0.936	0.935	0.893	0.830	2	0.886	0.863	0.837	0.834	0.836	0.827
3	0.859	0.878	0.848	0.944	0.946	0.949	4	0.821	0.829	0.848	0.871	0.889	0.906
5	0.866	0.910	0.947	0.959	0.953	0.958	6	0.878	0.856	0.836	0.838	0.837	0.833
-	2.0												
₽t2	$/p_{t_{\infty}} =$	0.88	м _р	$_{\rm l}/{\rm m}_{\infty} =$	0.06	5 _ ∆r	Pt ₂ =	0	.190		p ₂ /p _c	» =	6.3
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2	3	4	5	6
1	0.848	0.887	0.939	0.953	0.958	0.927	2	0.897	0.928	0.935	0.929	0.923	0.924
3	0.846	0.826	0.822	0.836	0.853	0.852	4	0.791	0.802	0.812	0.829	0.856	0.866
5	0.849	0.835	0.841	0.850	0.865	0.873	6	0.889	0.930	0.922	0.917	0.937	0.945
M _∞ =	1.7	5	α =	5.	0°	m _o /	/m _∞ = .		1	Exit s	etting	=	A
p _{t2}	/r _t _∞ =	0.93	<u>4</u> m _b :	$1/m_{\infty} =$		<u>86</u> △1	9t ₂ =	0	.088	_	p ₂ /p _c	» =	4.6
RAKE			'l'UBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	<u>1</u> 4	5	6	NO.	1	2	3	4	5	6
1	0.973	0.967	0.973	0.937	0.916	0.916	2	0.944	0.926	0.917	0.917	0.920	0.913
3	0.914	0.941	0.906	0.978	0.968	0.965	14	0.896	0.904	0.902	0.905	0.910	0.909
5	0.915	0.939	0.969	0.976	0.964	0.961	6	0.920	0.914	0.927	0.936	0.937	0.933
$M_{\infty} =$	1.7	5	_ α =	5•	0 °	m _o ,	/m _∞ =			Exit s	etting	= B	3
. .	/n. =	0.00	o m.	- /m -		. A1	n. -	_	0		n /n	_ ,	_
Pt ₂	$/p_{t_{\infty}} =$	0.92	<u>9 </u>		_0.07	9	t ₂ -	· · ·	108		P ₂ / P ₀	_∞ = <u>4</u>	·5
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	14	5	6	NO.	1	2	3	4	5	6
ll	0.970	0.966	0.978	0.944	0.919	0.915	2	0.940	0.924	0.918	0.916	0.920	0.913
3	0.911	0.933	0.884	0.974	0.963	0.966	4	0.881	0.877	0.887	0.900	0.917	0.932
5	0.909	0.924	0.939	0.953	0.949	0.958	6	0.924	0.913	0.930	0.936	0.938	0.934

TABLE II.- ENGINE-FACE PRESSURE RECOVERY DATA, ${\rm p_{t_2}/p_{t_\infty}}$ - Concluded

M ₀₀ =	= <u>l.7</u>	5	_ α =	5	.0°	m _o	$/m_{\infty} =$			Exit s	etting	= <u> </u>	<u>C</u>
₽ _{t₂}	$_{2}/p_{t_{\infty}}=$	0.9	24 m _b	1/m _∞ =	0.07	2 Δ	p _{t2} =	0.1	26	·	p ₂ /p	=	4.5
RAKE			TUBE	NO.			RAKE			TUBE	NO.		
NO.	1	2	3	1	5	6	NO.		2	3		5	6
1	0.964	0.963	0.982	0.946	0.924	0.915	2	0.940	0.920	0.918	0.915	0.921	0.912
3	0.908	0.931	0.878	0.951	0.947	0.962	4	0.865	0.867	0.876	0.882	0.902	0.909
5	0.910			7	1	1	П	0.921	0.915	0.930	0.937	0.937	0.933
M _∞ =	1.5	5	α =	5	.0°	m _o	$/m_{\infty} = $			Exit s	etting	=	A
₽ _{t2}	$p_{t_{\infty}} =$	0.93	<u>ц</u> тъ	$_{ m l}/{ m m}_{\infty}$ =	_0.07	7	p _{t2} =	0.11	2		p ₂ /p	∞ = <u> </u>	3.5
RAKE			TUBE	NO.			RAKE			TUBE	NO.	·	_
NO.	1	2	3	4	5	6	NO.	1	2	3	<u>1</u>	5	6
1	0.967	0.962	0.947	0.950	0.954	0.869	2	0.932	0.939	0.951	0.945	0.957	0.866
3	0.926	0.939	0.890	0.966	0.965	0.971	<u> 1</u> 4	0.888	0.883	0.886	0.891	0.899	0.903
5	0.923	0.930	0.943	0.955	0.957	0.964	6	0.928	0.942	0.958	0.966	0.966	0.965
M _∞ =	1.59	5	α =	5	.0°	m _O /	$m_{\infty} =$			Exit s	etting	= <u> </u>	В
	/p _t =												
- 62				<u></u>							. +2/+	∞ <u> </u>	,
RAKE			TUBE				RAKE			TUBE	i '	i	,]
NO.	1	2	3	4	5	6	NO.	11	2	3	4	5	6
1	0.952	0.949	0.943	0.950	0.951	0.769	2	000	0 01/7	ار ما	0 010	0-0-0	0.751
3	000					- 1 9 7		0.929	0.941	[0.954]	0.943	[0.958]	0 • 1 2 ±]
_	0.925	0.923	0.878	0.942				0.867		ት 1		i i	i i
5	0.925			_ 1	0.953	0.9 <u>5</u> 8	- 4	0.867	0.867	0.876	0.880	0.889	i i
	 i	0.914	0.918	0.931	0.953 0.937	0.9 <u>5</u> 8 0.945	4	0.867	0.867 0.944	0.876 0.962	0.880 0.971	0.889	0.896 0.969
M _∞ =	0.916	0 . 914	0.918 α =	0.931 5.0	0.953 0.937 °	0.958 0.945 m _{o/}	4 6 /m∞ =	0.867 0.919	0.867 0.944	0.876 0.962	0.880 0.971 etting	0.889	0.896 0.969
M _∞ =	0.916	0 . 914	0.918 α =	0.931 5.0 1/m _∞ =	0.953 0.937 °	0.958 0.945 m _{o/}	4 6 /m∞ =	0.867 0.919	0.867 0.944	0.876 0.962 Exit se	0.880 0.971 etting p ₂ /p ₀	0.889 0.970 =(0.896 0.969
$M_{\infty} = \bar{p}_{t_2}$	0.916	0 . 914	0.918 α = 06 m _b	0.931 5.0 1/m _∞ =	0.953 0.937 °	0.958 0.945 m _{o/}	$\frac{4}{6}$ $m_{\infty} = \frac{1}{2}$ $m_{\infty} = \frac{1}{2}$	0.867 0.919	0.867 0.944	0.876 0.962	0.880 0.971 etting p ₂ /p ₀	0.889 0.970 =(0.896 0.969
$M_{\infty} = \bar{p}_{t_2}$	0.916 1.5 p _{t_w} =	0.914	0.918 $\alpha = 06 m_{b}$ TUBE	0.931 5.0 $1/m_{\infty} = 0.0$ $1/m_{\infty} = 0.0$	0.953 0.937 0.06	0.958 0.945 m _o / 61 Δ _I	μ 6 $m_{\infty} = 0$ $t_2 = 0$ $m_{\infty} = 0$ $m_{\infty} = 0$ $m_{\infty} = 0$ $m_{\infty} = 0$	0.867	0.867	0.876 0.962 Exit se TUBE	0.880 0.971 etting P ₂ /P ₀ NO.	0.889 0.970 =	0.896]
$M_{\infty} = \bar{p}_{t_2}$ RAKE	0.916 1.5 p _t = 1 0.955	0.914 55 0.90 2 0.950	0.918 $\alpha = 06 m_{b}$ $TUBE$ 3	0.931 5.0 $1/m_{\infty} = 0.949$	0.953 0.937 0.06 5 0.950	0.958 0.945 m _o / 1 \triangle 1 6 0.553	$\begin{array}{c} 4 \\ 6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.867	0.867 0.944 54 2	0.876 0.962 Exit se TUBE 3 0.952	0.880 0.971 etting p ₂ /p ₀ NO.	0.889 0.970 =	0.896] 0.969 3.0 6 0.546

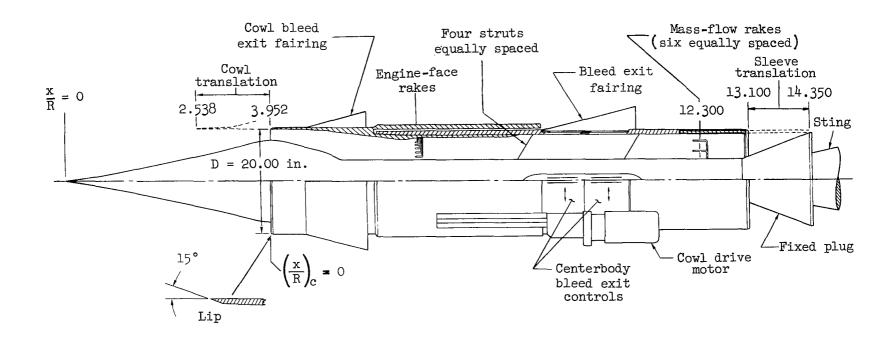
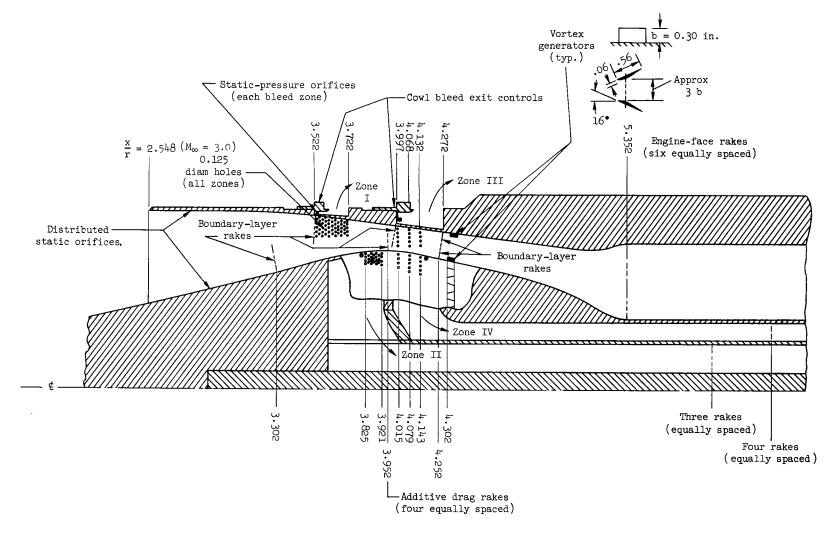

TABLE III.- INDEX TO FIGURES

Figure	
1	Model photograph
2(a)-2(b)	Sketches of model
3	Area distributions
<u>)</u>	Design flow field
5	Theoretical mass-flow ratio
6	Contraction ratio
7	Maximum design performance (variable $(x/R)_{lip}$)
8	Maximum design performance (maximum pressure recovery)
9	Supercritical performance (variable $(x/R)_{lip}$)
10(a)-10(i)	Supercritical performance ($M_{\infty} = 3.20$ -1.55, $\alpha = 0^{\circ}$)
1.1	Maximum off-design performance, $\alpha = 0^{\circ}$
12(a)-12(g)	Supercritical performance at angle of attack
13(a)-13(c)	Maximum performance at angle of attack
14(a)-14(i)	Total-pressure distortion profiles at the engine face
15(a)-15(i)	Supercritical bleed flow, individual bleed zones
16(a)-16(i)	Bleed plenum chamber pressure recoveries
17(a)-17(d)	Maximum bleed plenum chamber pressure recoveries
18(a)-18(c)	Pitot pressure profiles, maximum pressure recovery
19 - 27	Static-pressure distributions
28-30	Effect of unstarting the inlet
31	Inlet tolerance to change in angle of attack
32(a)-32(h)	Transonic performance, $M_{\infty} = 0.6-1.3$
33(a)-33(c)	Transonic performance at angle of attack


Figure 1.- Model mounted in Supersonic Wind Tunnel.

A-36911

(a) Overall model.

Figure 2.- Model.

(b) Bleed configuration and instrumentation.

Figure 2.- Concluded.

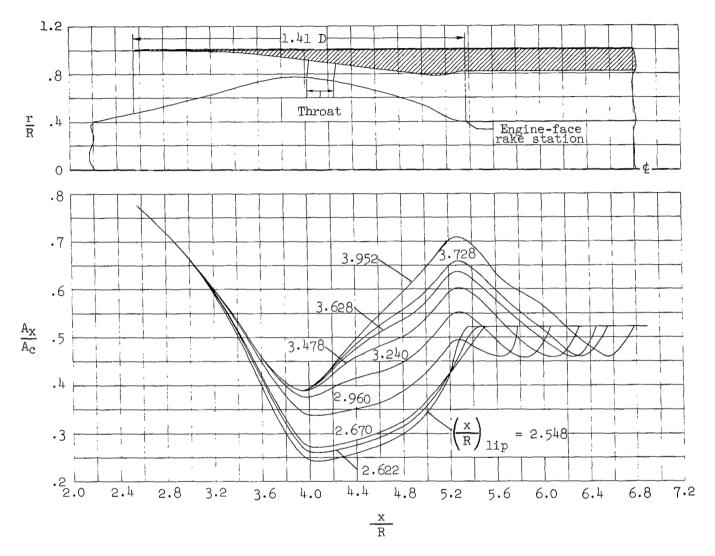


Figure 3.- Area distributions.

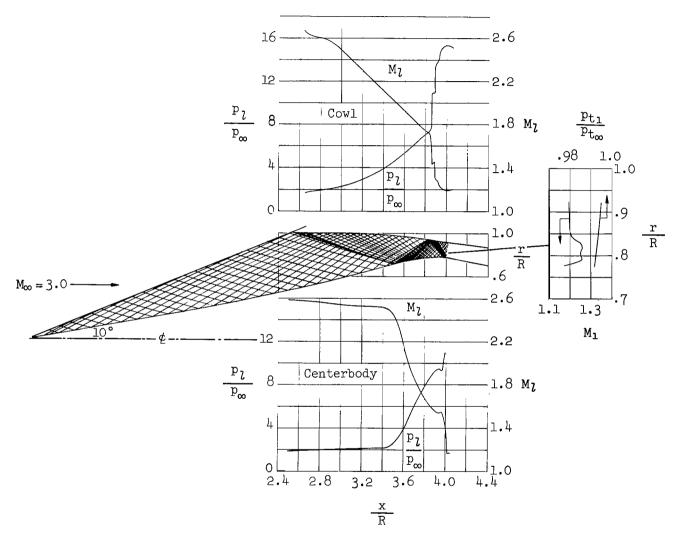


Figure 4.- Design theoretical flow field.

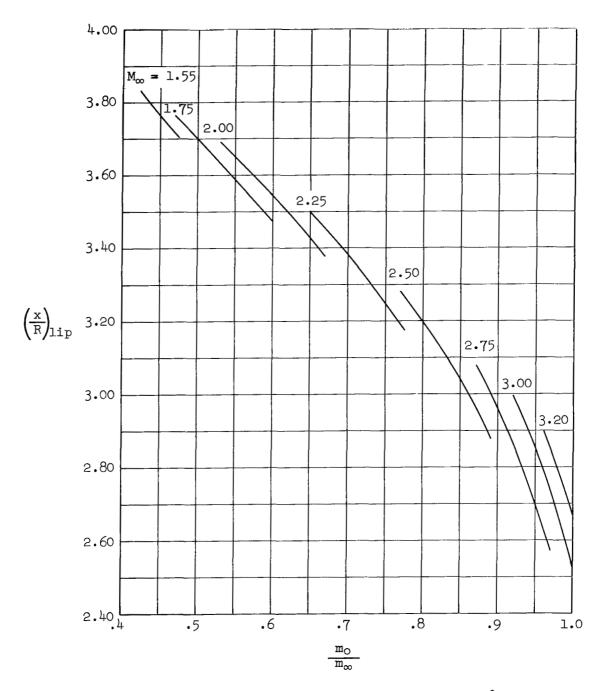


Figure 5.- Inlet theoretical mass-flow ratios; α = 0°.

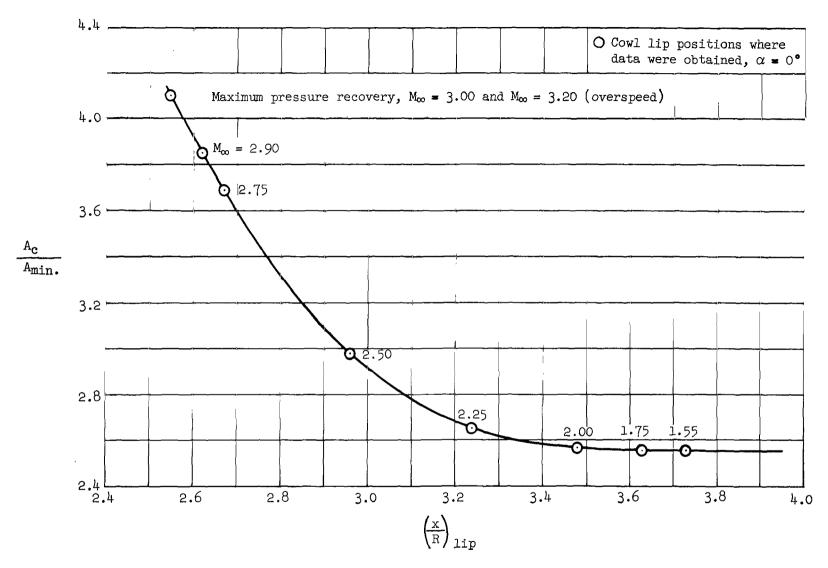


Figure 6.- Inlet contraction ratio.

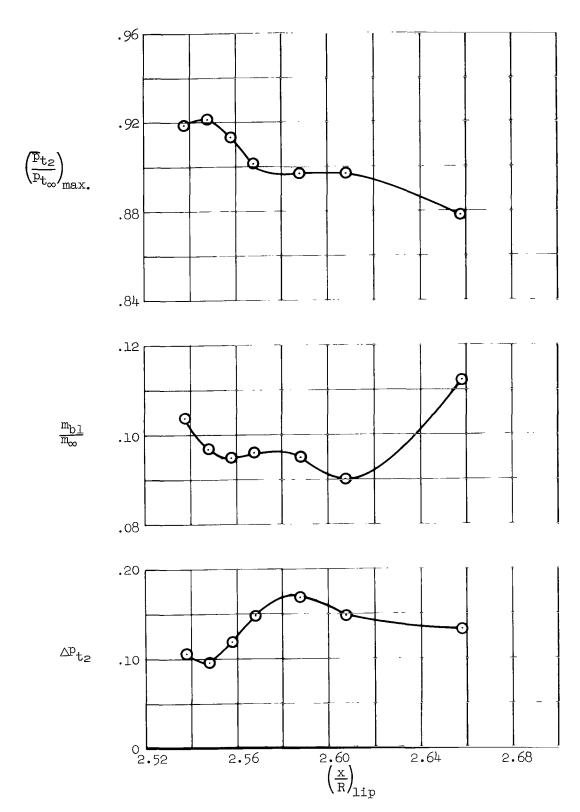
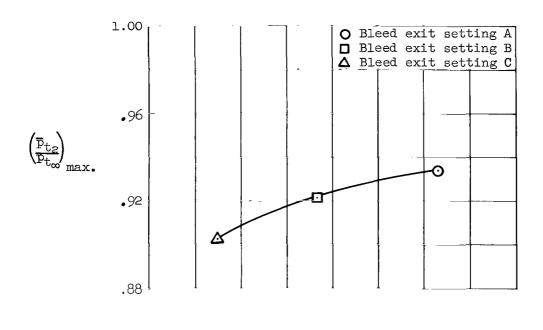



Figure 7.- Maximum performance at various cowl lip positions, bleed exit setting B; M_{∞} = 3.00, α = 0°.

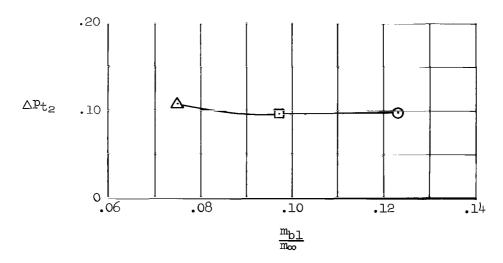
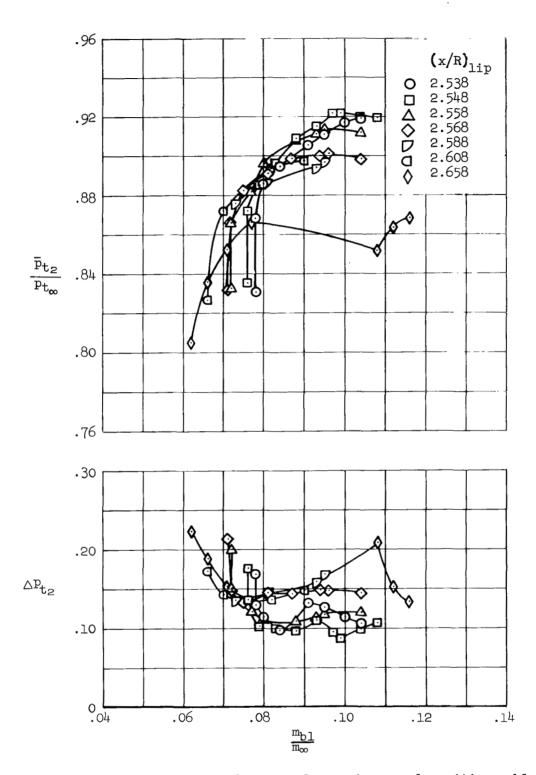
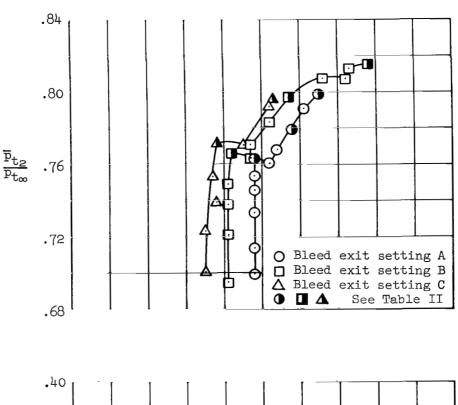
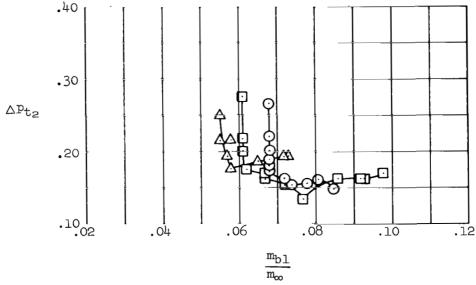
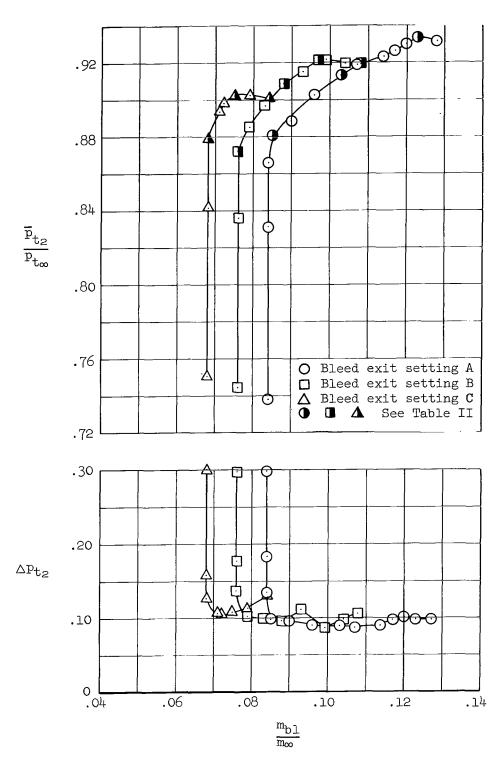
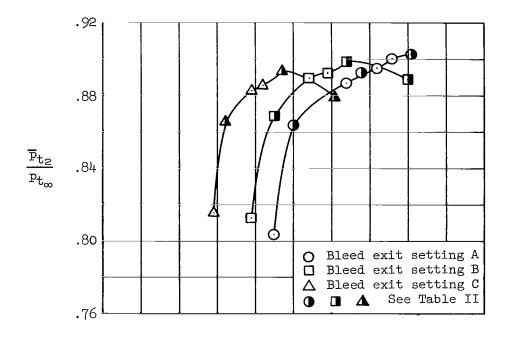


Figure 8.- Maximum performance for various boundary layer bleed exit settings; (x/R)_{lip} = 2.548; M_{∞} = 3.00, α = 0°.


Figure 9.- Supercritical performance for various cowl positions, bleed exit setting B; $\rm M_{\infty}$ = 3.00, α = 0 $^{\circ}$.



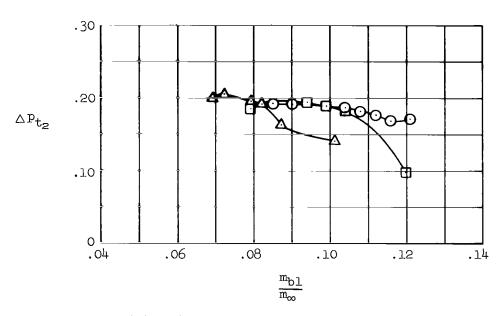
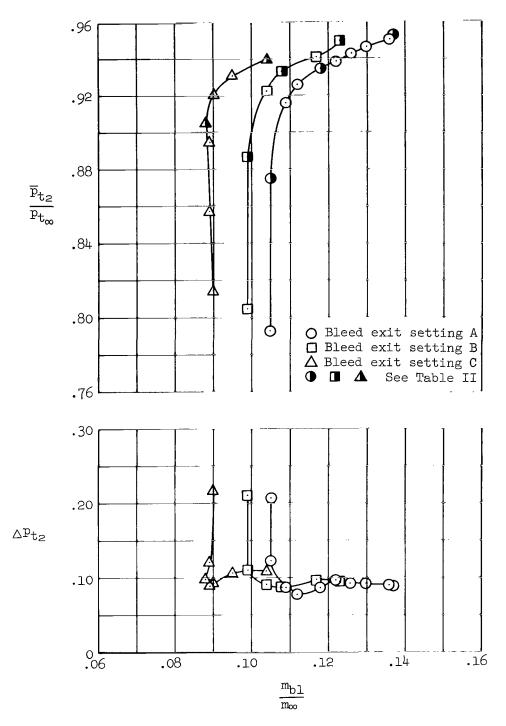
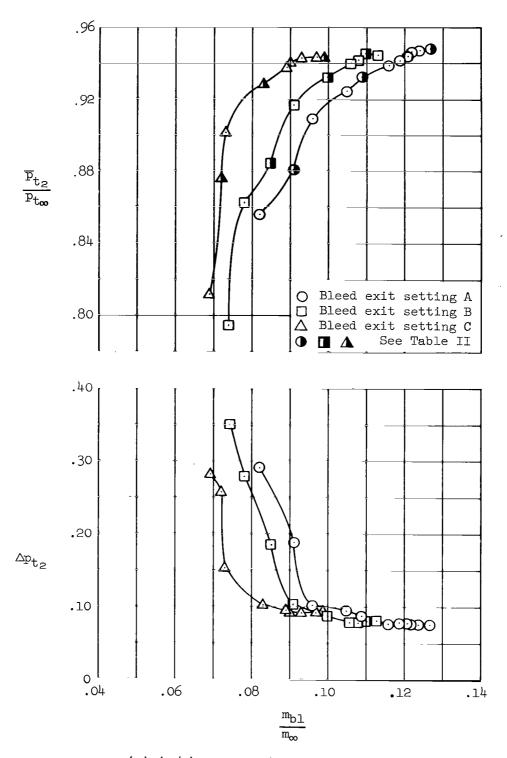

(a) $(x/R)_{lip} = 2.548$, $M_{\infty} = 3.20$

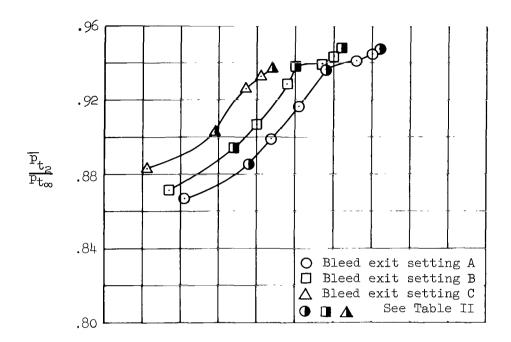
Figure 10.- Supercritical performance, α = 0°. (Tabulated pressure recoveries and mass-flow ratios are included in Table II for points with half-filled symbols.)

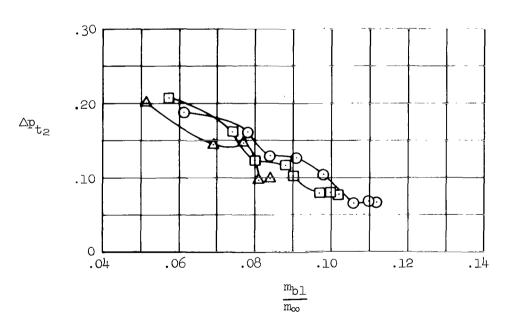


(b) $(x/R)_{lip} = 2.548$, $M_{\infty} = 3.00$. Figure 10.- Continued.

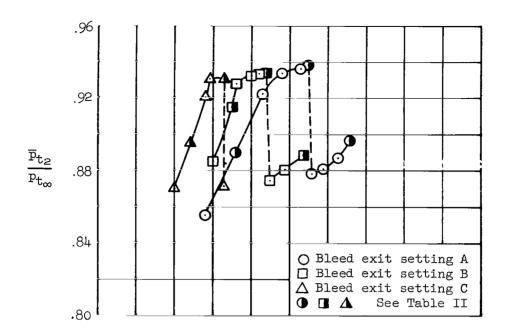


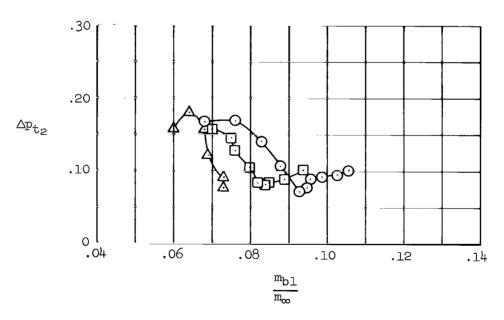
(c) $(x/R)_{lip} = 2.622$, $M_{\infty} = 2.90$. Figure 10.- Continued.



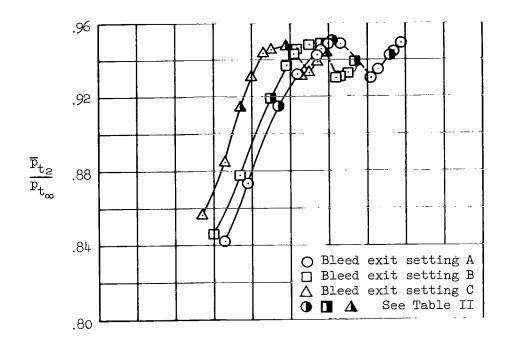

(d) $(x/R)_{lip} = 2.670$, $M_{\infty} = 2.75$. Figure 10.- Continued.

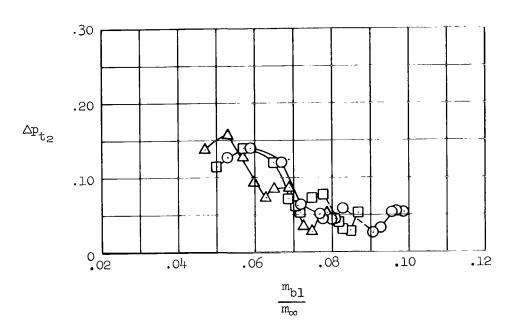
(e) $(x/R)_{lip} = 2.960$, $M_{\infty} = 2.50$


Figure 10. - Continued.

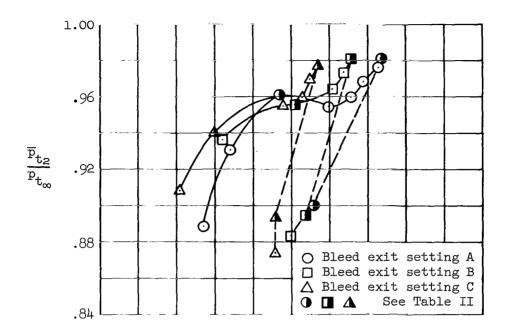


(f) $(x/R)_{lip} = 3.240$, $M_{\infty} = 2.25$


Figure 10.- Continued.



(g) $(x/R)_{lip} = 3.478$, $M_{\infty} = 2.00$ Figure 10. - Continued.


1.

(h) $(x/R)_{lip} = 3.628$, $M_{\infty} = 1.75$

Figure 10. - Continued.

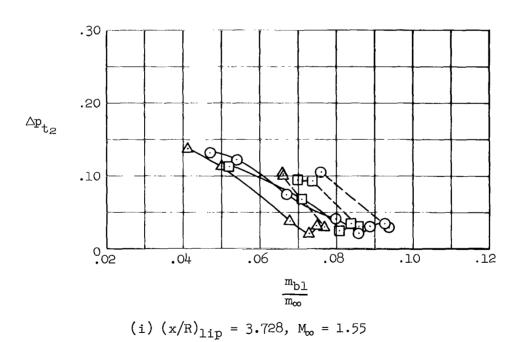


Figure 10.- Concluded.

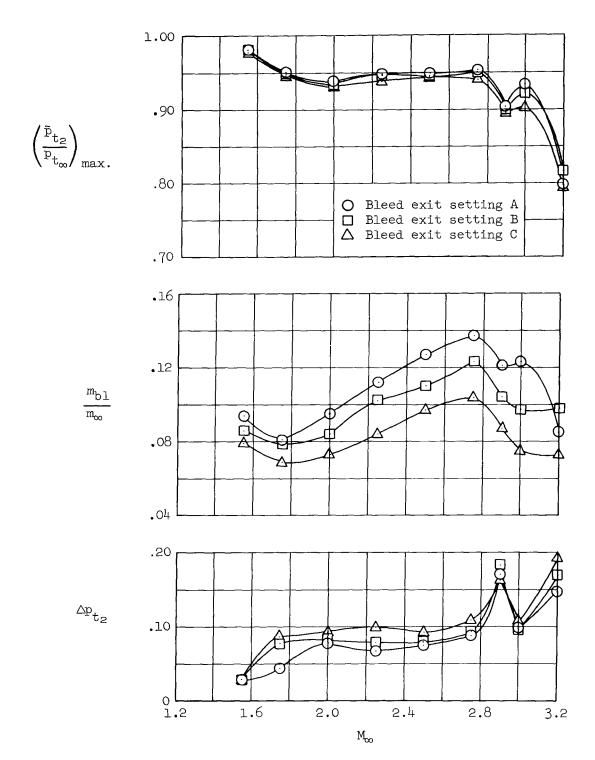


Figure 11.- Off-design maximum performance; α = 0°.

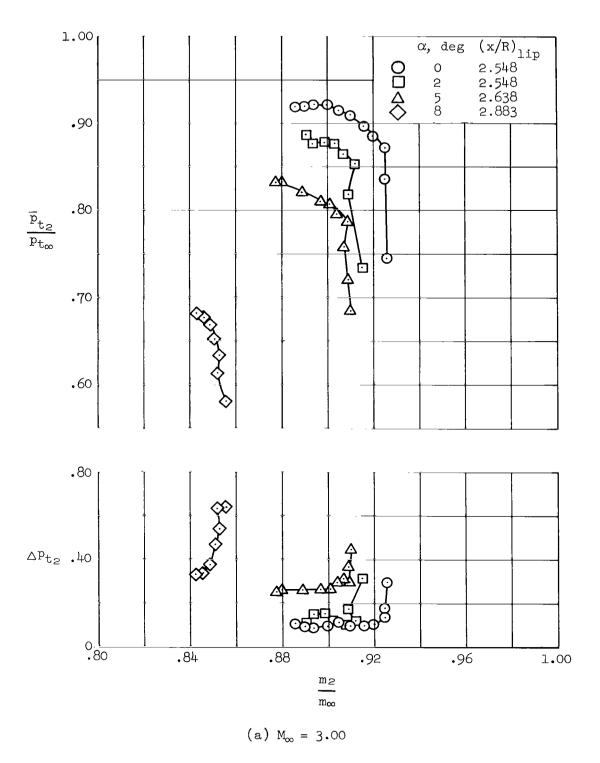


Figure 12.- Supercritical performance at angle of attack; bleed exit setting B.

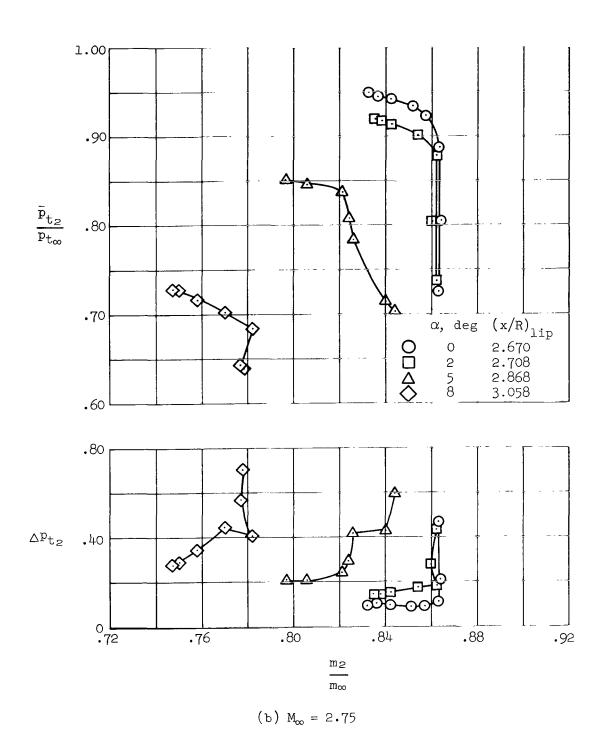


Figure 12.- Continued.

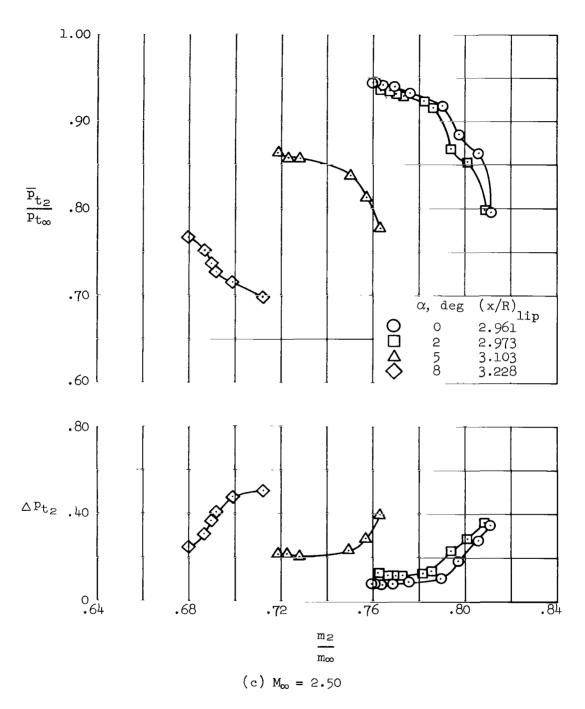


Figure 12.- Continued.

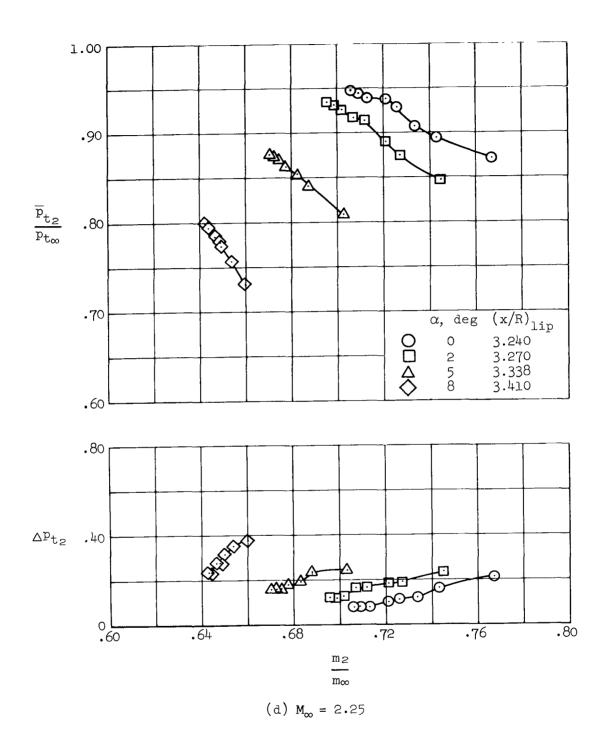


Figure 12.- Continued.

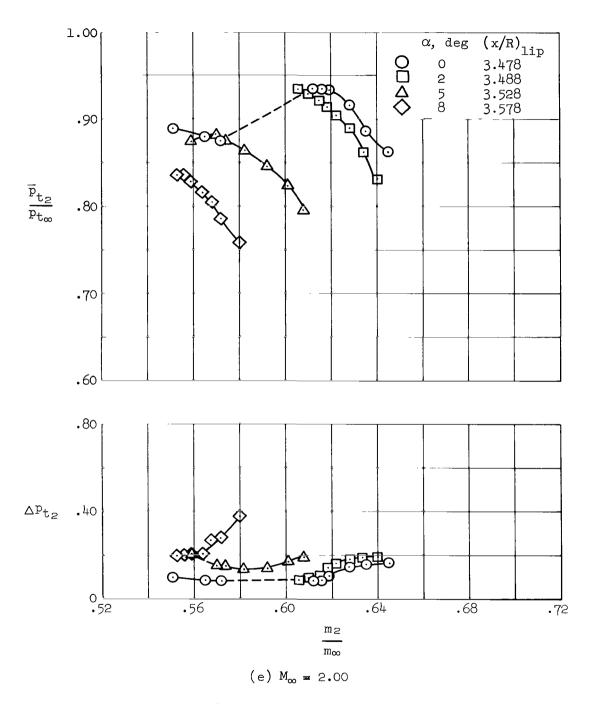


Figure 12.- Continued.

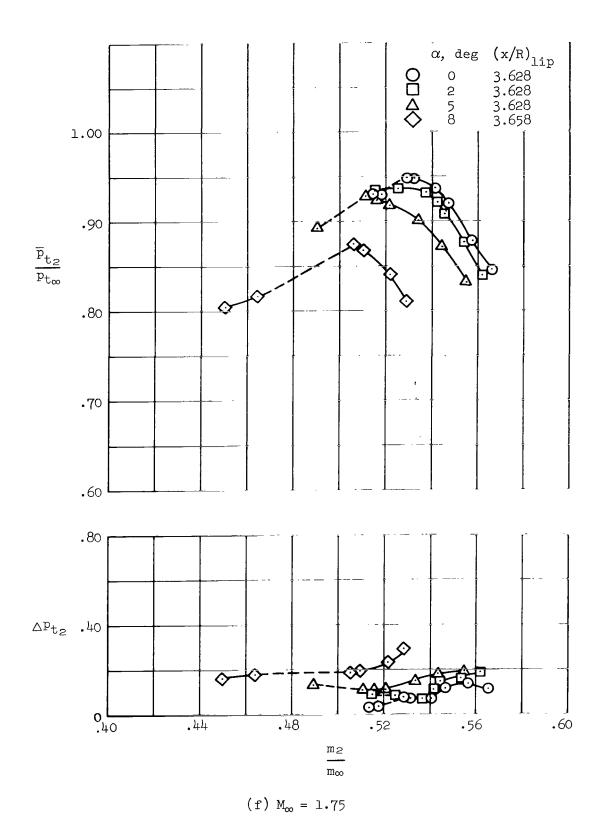
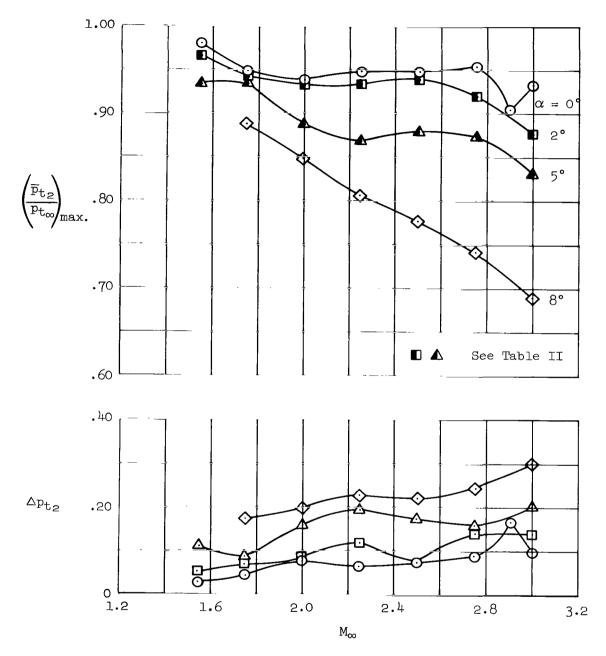
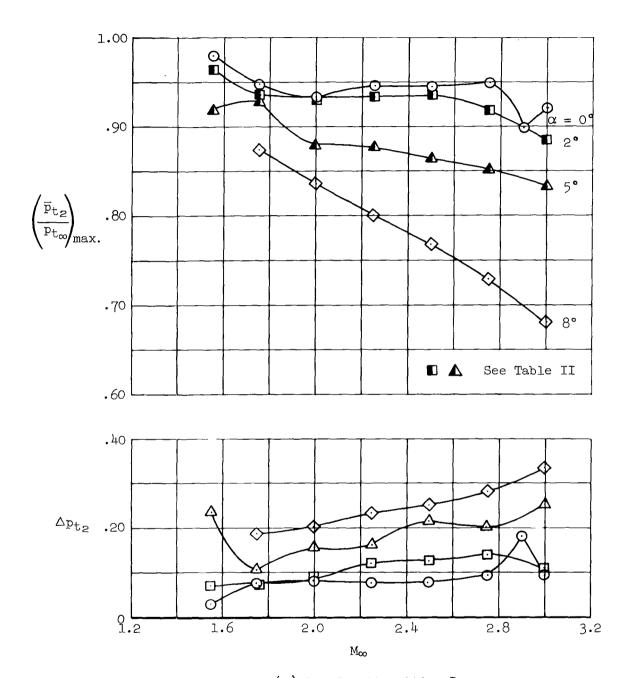
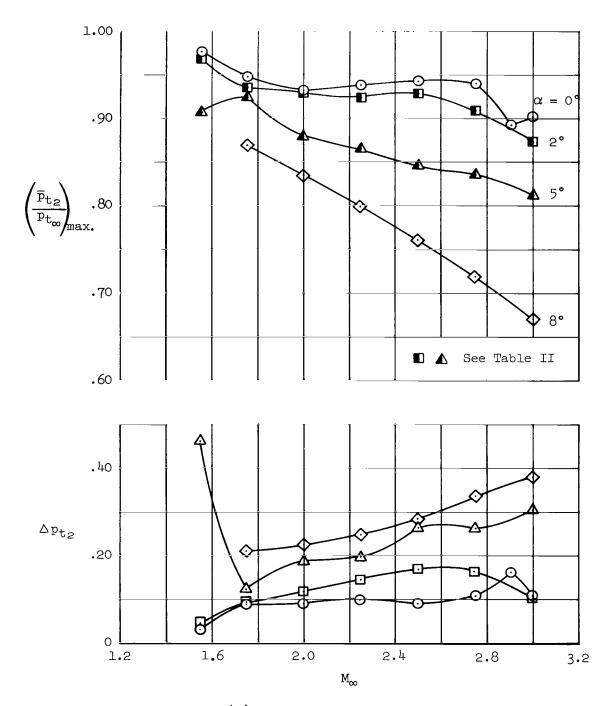




Figure 12.- Concluded.



(a) Bleed exit setting A

Figure 13.- Maximum performance at angle of attack.

(b) Bleed exit setting B
Figure 13.- Continued.

(c) Bleed exit setting C
Figure 13.- Concluded.

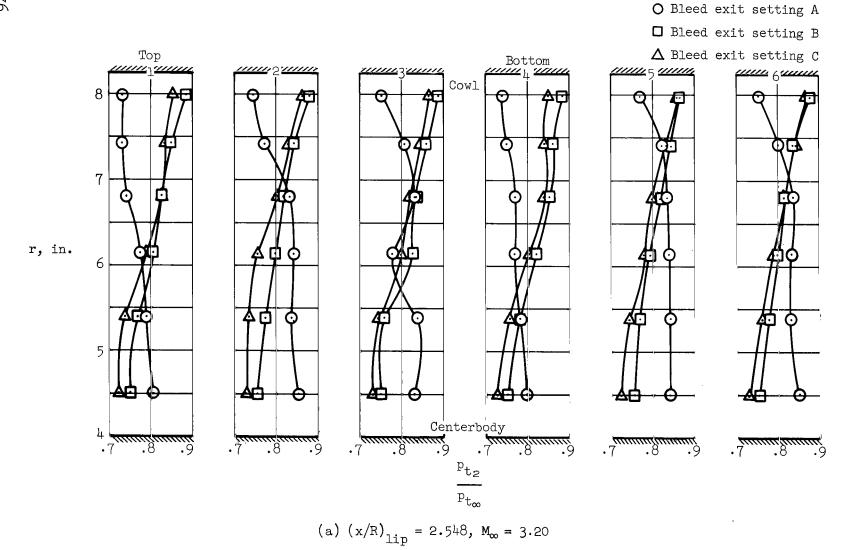


Figure 14.- Total-pressure recovery profiles at the engine-face, maximum pressure recovery; $\alpha = 0^{\circ}$.

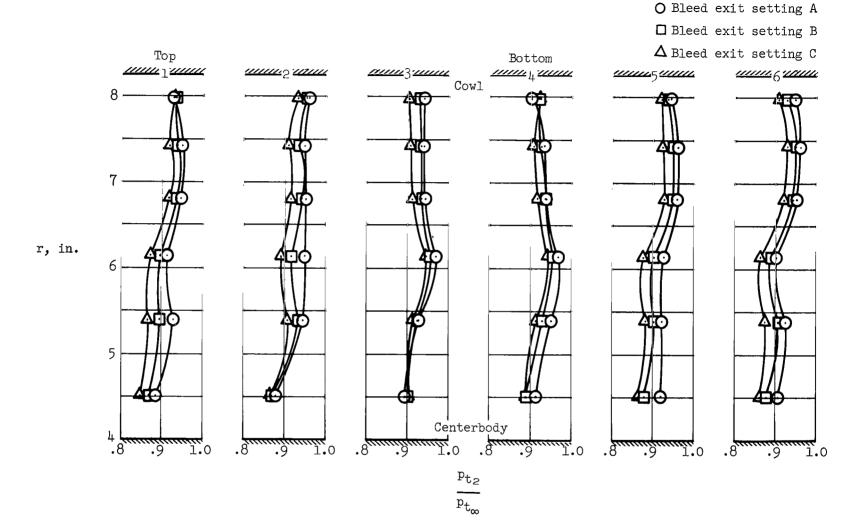
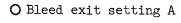
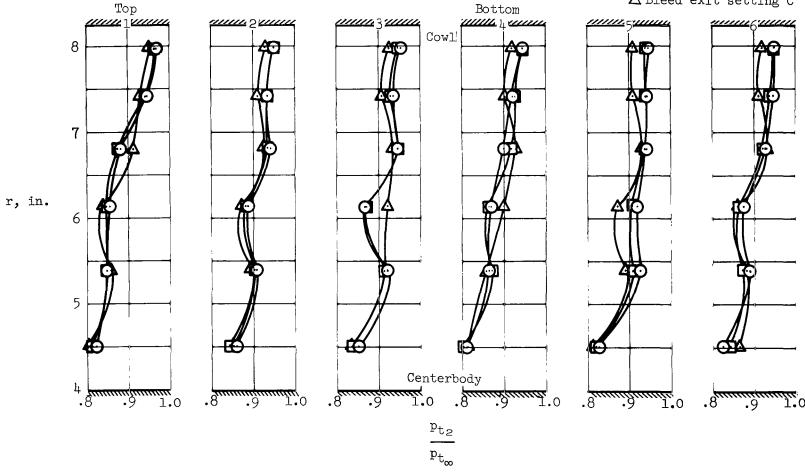




Figure 14. - Continued.

(b) $(x/R)_{lip} = 2.548$, $M_{\infty} = 3.00$

- □ Bleed exit setting B
- Δ Bleed exit setting C

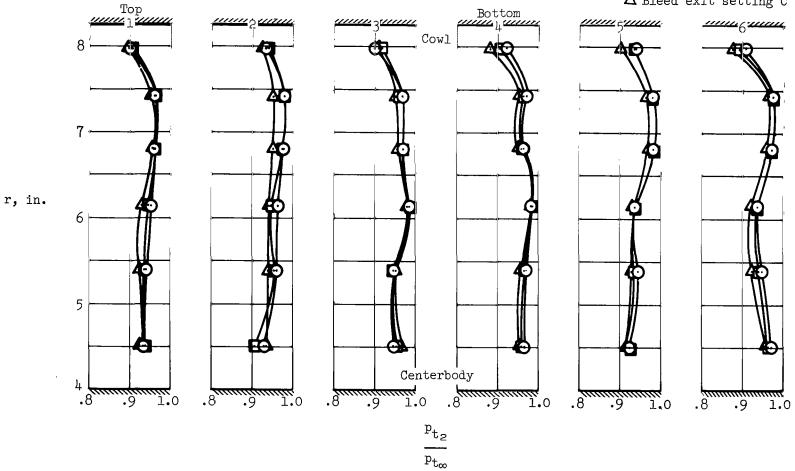
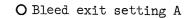
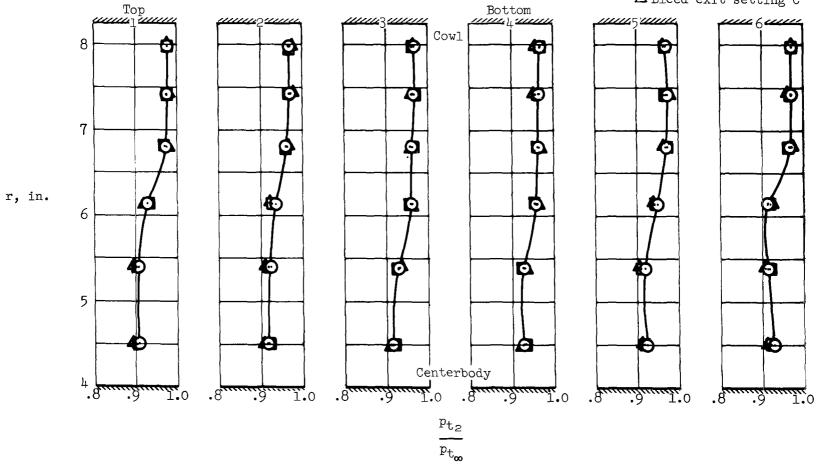

(c)
$$(x/R)_{lip} = 2.622$$
, $M_{\infty} = 2.90$

Figure 14.- Continued.

O Bleed exit setting A

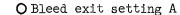

☐ Bleed exit setting B

△ Bleed exit setting C

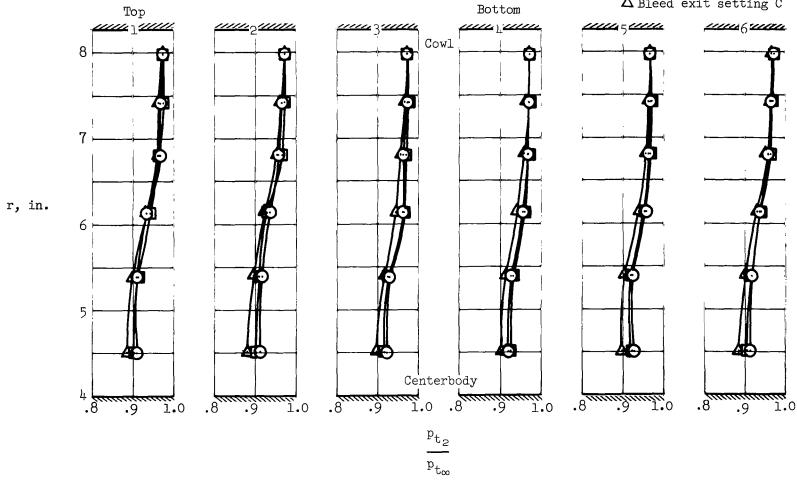


(d)
$$(x/R)_{lip} = 2.670$$
, $M_{\infty} = 2.75$

Figure 14.- Continued.



- ☐ Bleed exit setting B
- Δ Bleed exit setting C

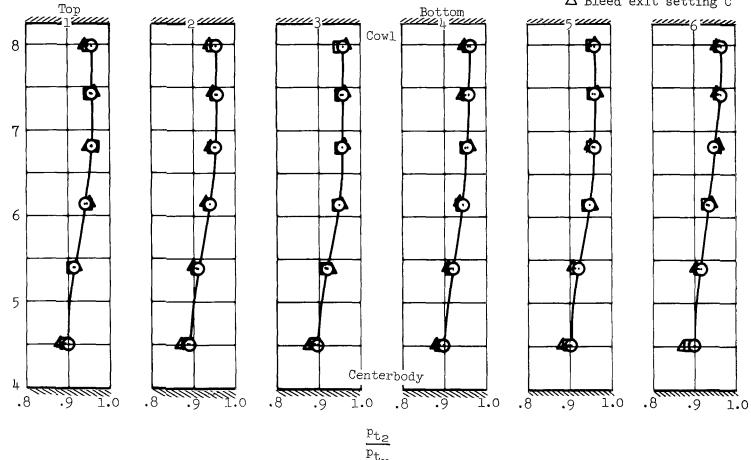


(e)
$$(x/R)_{lip} = 2.960, M_{\infty} = 2.50$$

Figure 14.- Continued.

- ☐ Bleed exit setting B
- Δ Bleed exit setting C

(f)
$$(x/R)_{lip} = 3.240$$
, $M_{\infty} = 2.25$


Figure 14.- Continued.

r, in.

O Bleed exit setting A

☐ Bleed exit setting B

 Δ Bleed exit setting C

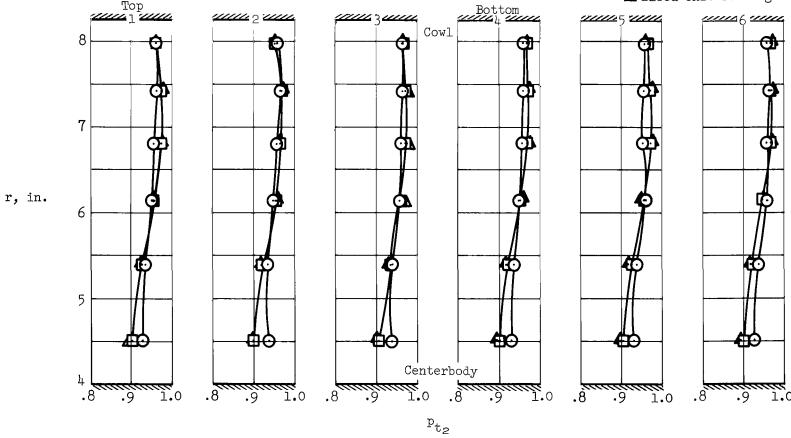

(g)
$$(x/R)_{lip} = 3.478$$
, $M_{\infty} = 2.00$

Figure 14.- Continued.

O Bleed exit setting A

☐ Bleed exit setting B

 Δ Bleed exit setting C

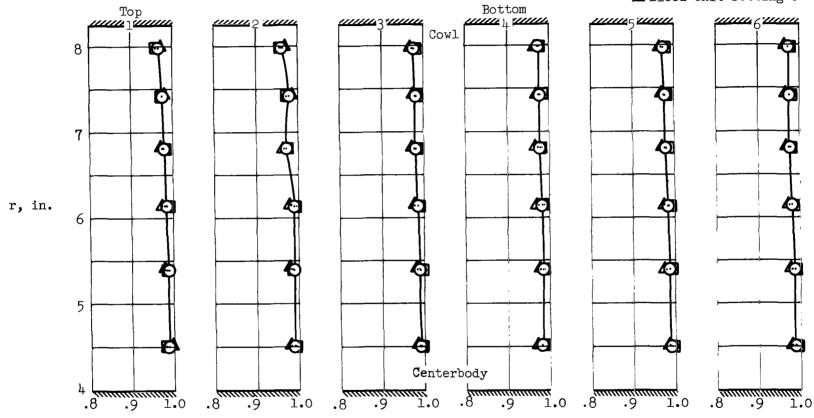

(h) $(x/R)_{lip} = 3.628$, $M_{\infty} = 1.75$

Figure 14.- Continued.

O Bleed exit setting A

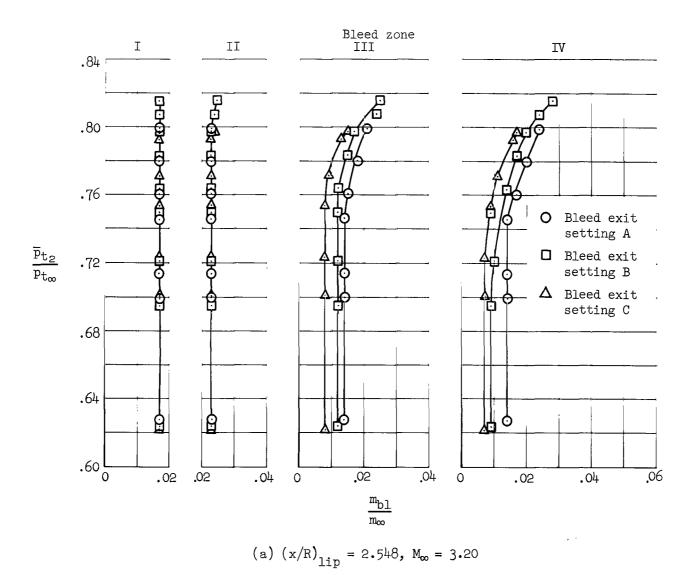
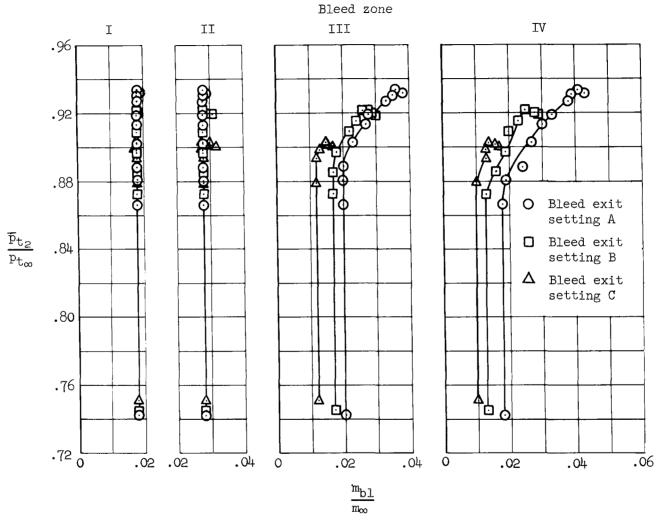
☐ Bleed exit setting B

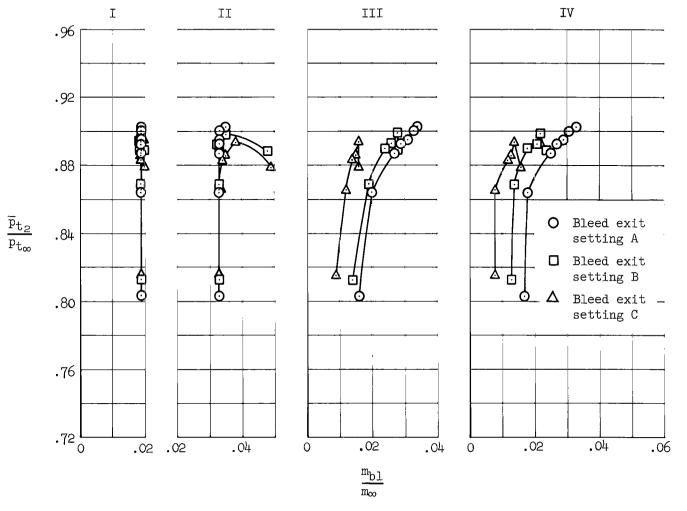
 Δ Bleed exit setting C

$$\frac{p_{t_2}}{p_{t_\infty}}$$

(i)
$$(x/R)_{lip} = 3.728$$
, $M_{\infty} = 1.55$

Figure 14.- Concluded.


Figure 15.- Supercritical bleed flow, individual bleed zones; $\alpha = 0^{\circ}$.

(b)
$$(x/R)_{lip} = 2.548$$
, $M_{\infty} = 3.00$

Figure 15.- Continued.

(c)
$$(x/R)_{lip} = 2.622$$
, $M_{\infty} = 2.90$

Figure 15.- Continued.

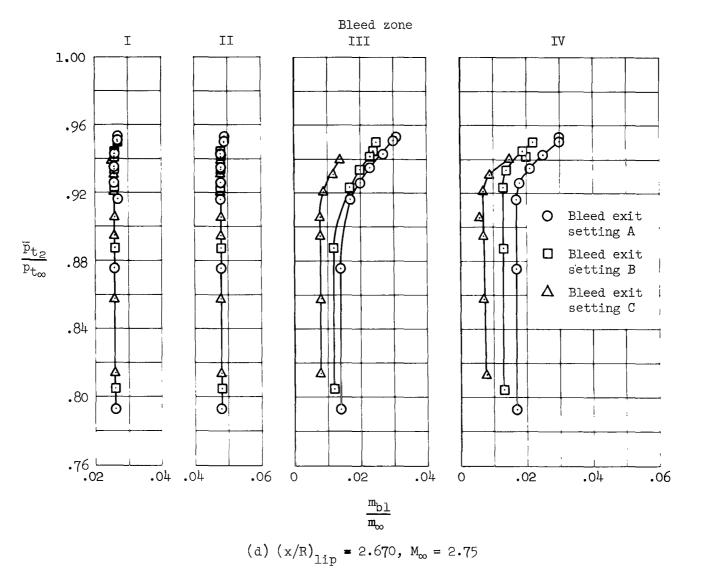
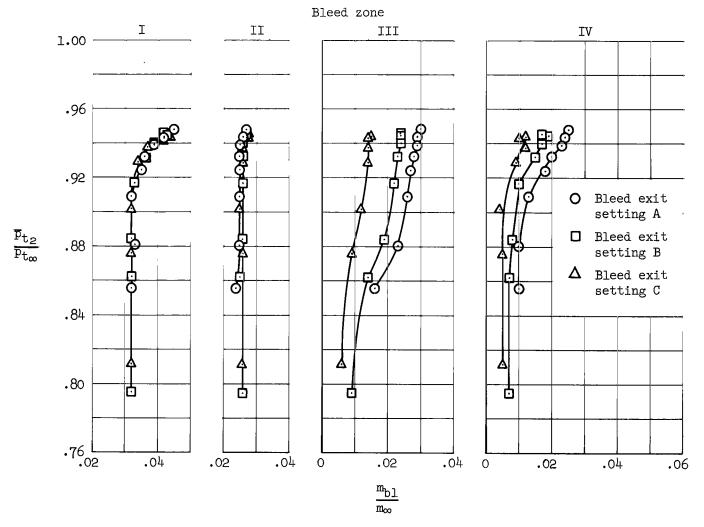
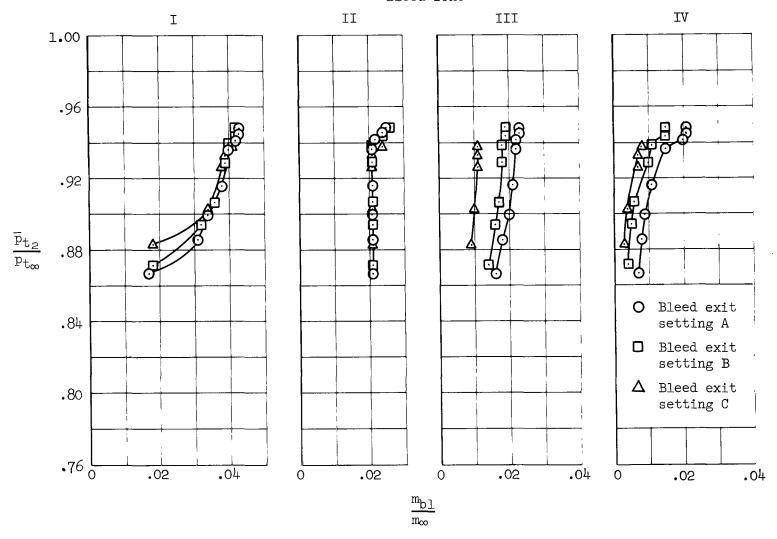




Figure 15.- Continued.

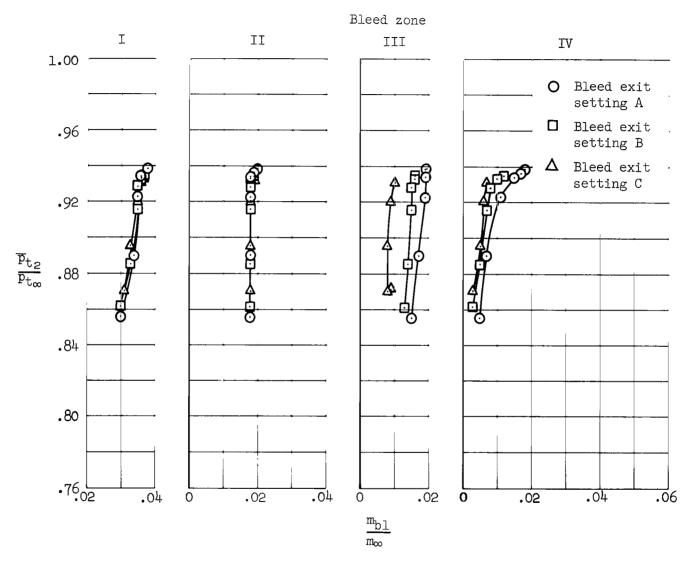

(e) $(x/R)_{lip} = 2.960$, $M_{\infty} = 2.50$

Figure 15.- Continued.

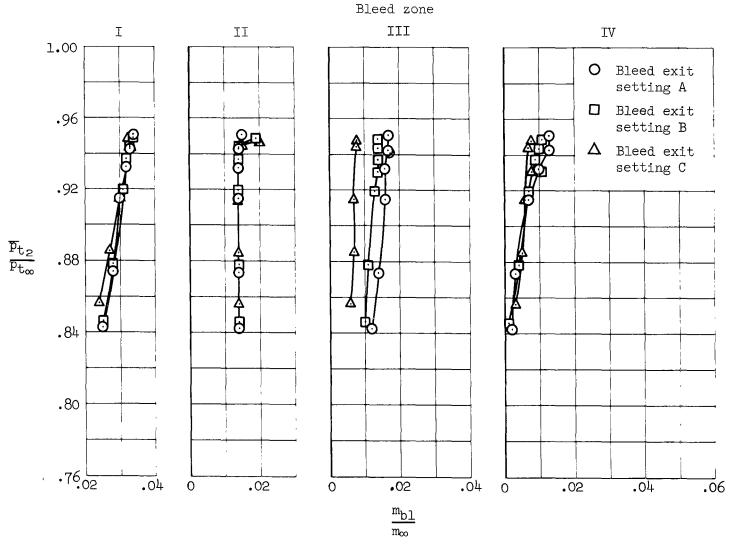
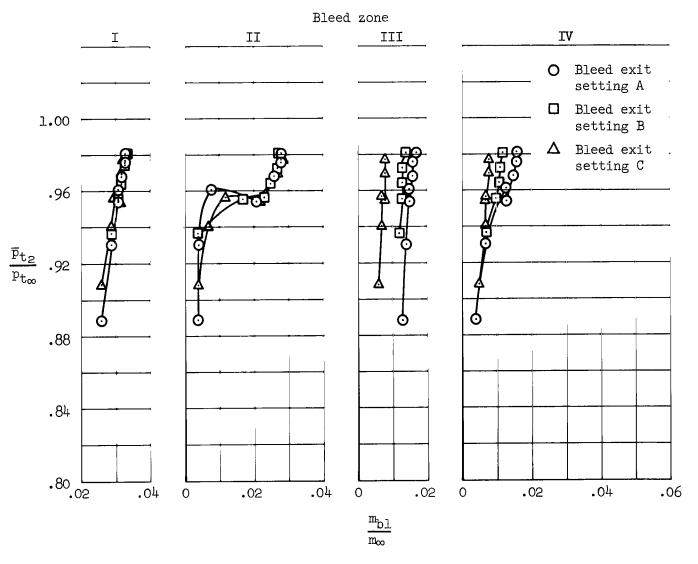

(f)
$$(x/R)_{lip} = 3.240$$
, $M_{\infty} = 2.25$

Figure 15.- Continued.



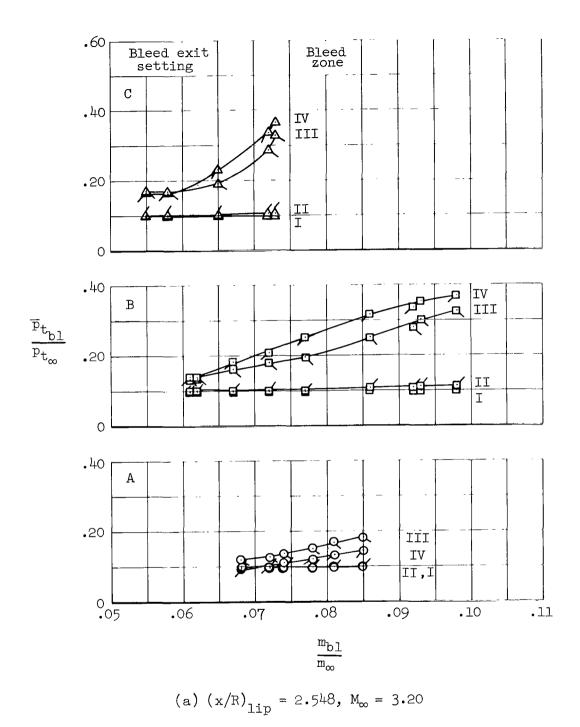
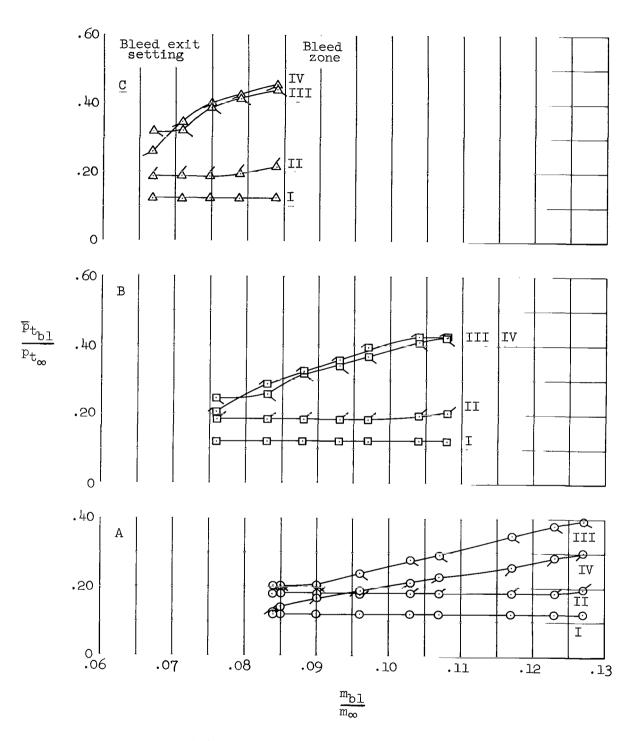
(g) $(x/R)_{lip} = 3.478$, $M_{\infty} = 2.00$

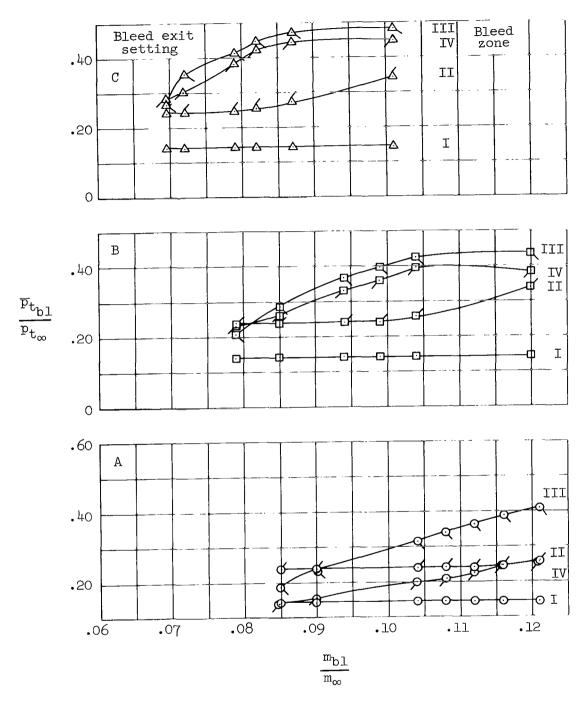
Figure 15.- Continued.

(h) $(x/R)_{lip} = 3.628$, $M_{\infty} = 1.75$ Figure 15.- Continued.

(i) $(x/R)_{lip} = 3.728$, $M_{\infty} = 1.55$

Figure 15.- Concluded.


Figure 16.- Bleed plenum chamber pressure recoveries; $\alpha = 0^{\circ}$.

(b) $(x/R)_{lip} = 2.548$, $M_{\infty} = 3.00$

Figure 16.- Continued.

IIII....

(c) $(x/R)_{lip} = 2.622, M_{\infty} = 2.90$

Figure 16.- Continued.

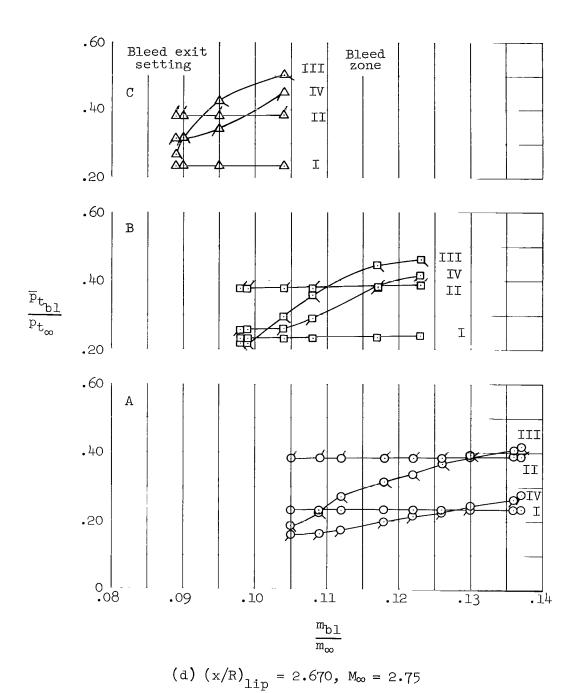


Figure 16.- Continued.

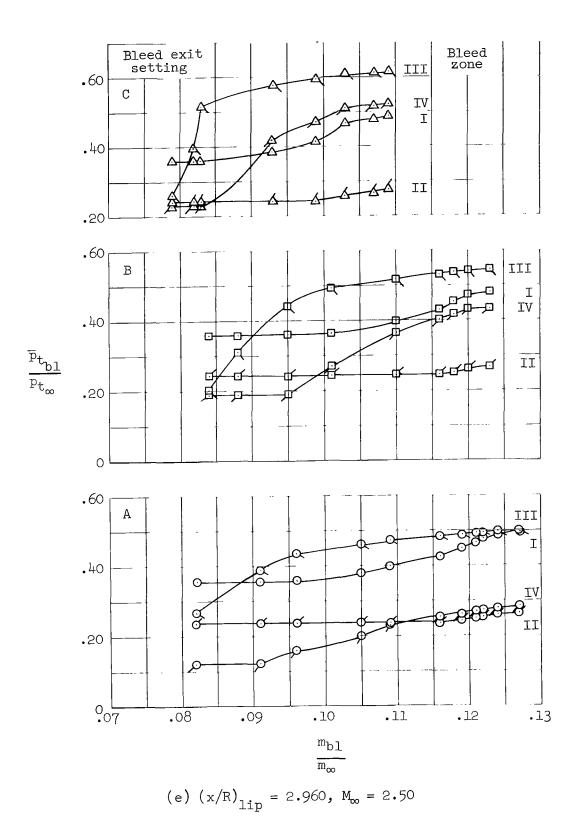


Figure 16.- Continued.

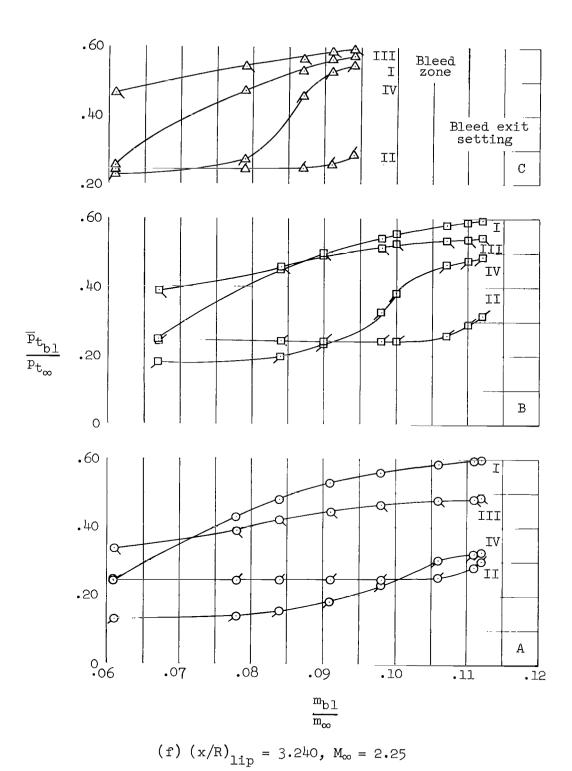
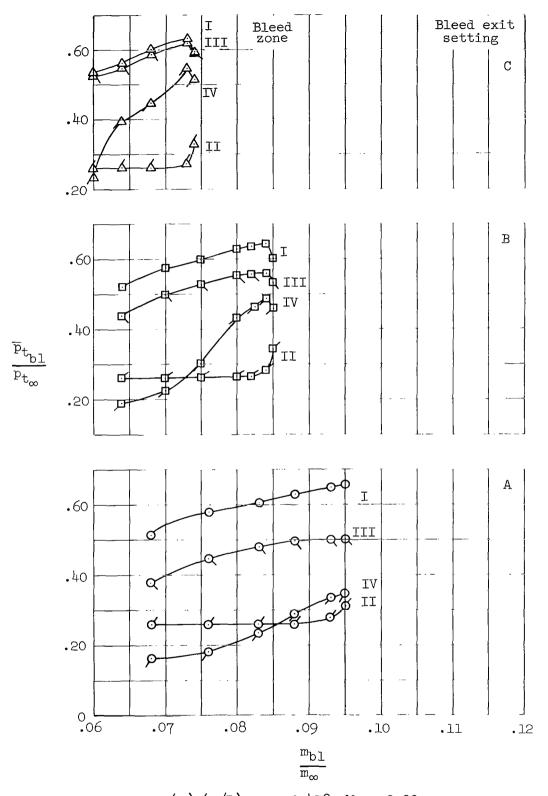
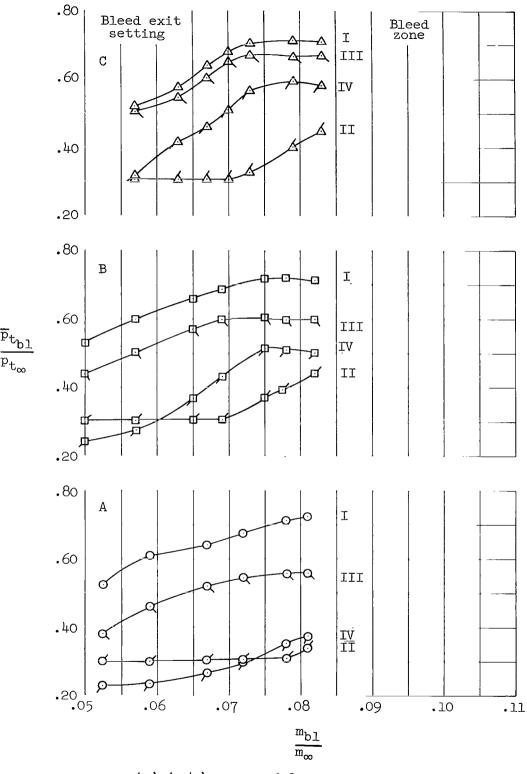
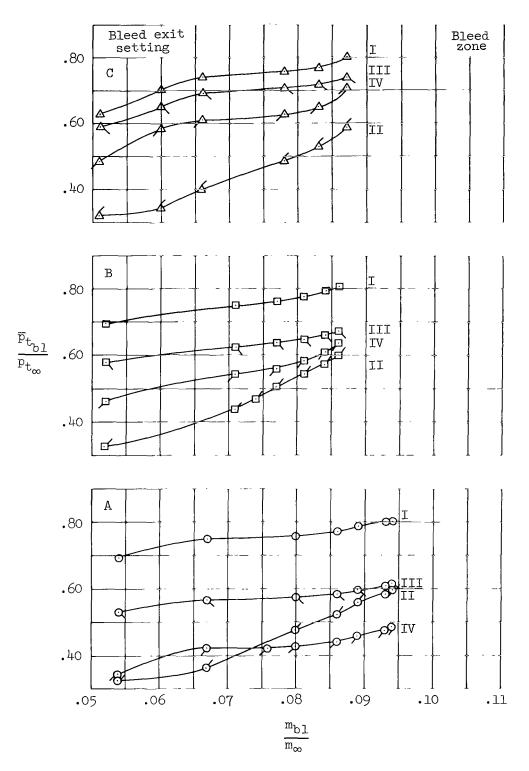




Figure 16.- Continued.



(g) $(x/R)_{\text{lip}} = 3.478$, $M_{\infty} = 2.00$ Figure 16.- Continued.

(h) $(x/R)_{\text{lip}} = 3.628$, $M_{\infty} = 1.75$ Figure 16.- Continued.

|||| _

(i) $(x/R)_{lip} = 3.728$, $M_{\infty} = 1.55$

Figure 16.- Concluded.

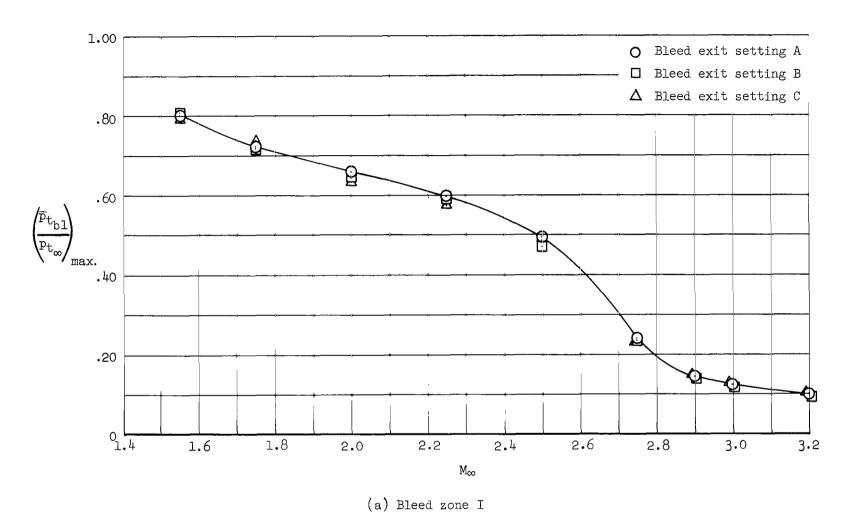
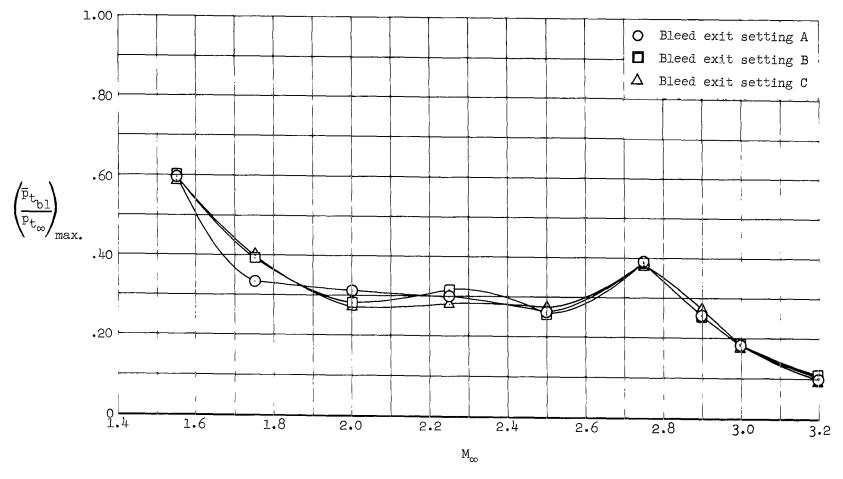
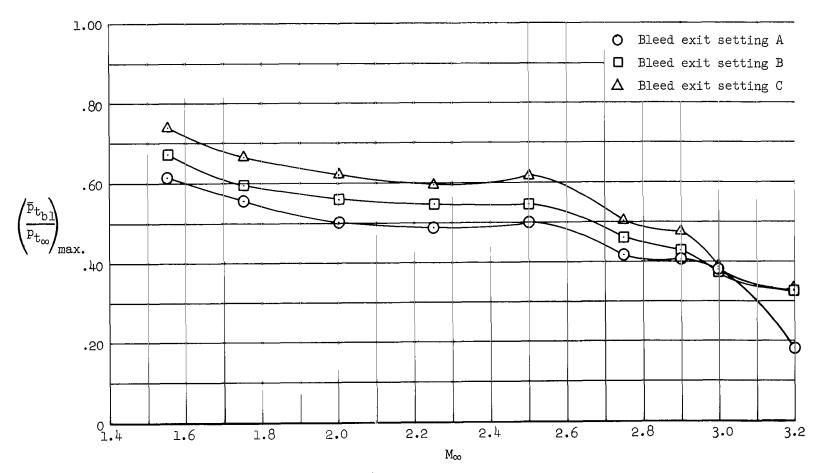




Figure 17.- Maximum bleed plenum chamber pressure recoveries; $\alpha = 0^{\circ}$.

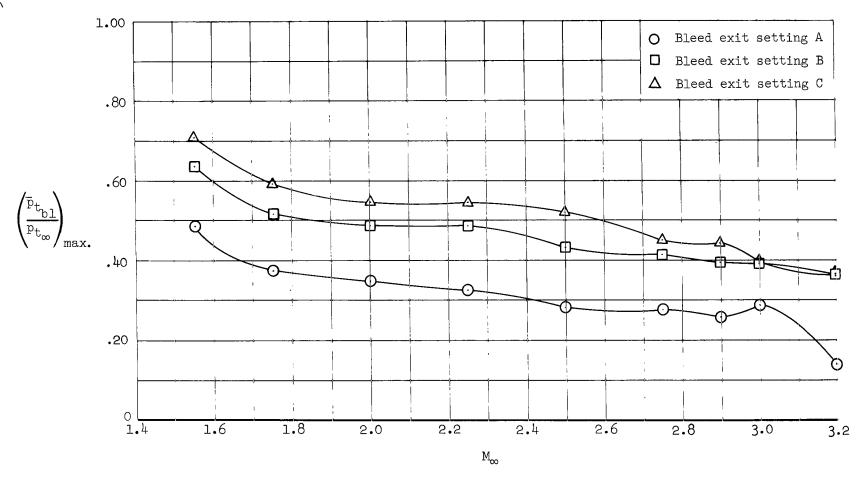

(b) Bleed zone II

Figure 17.- Continued.

(c) Bleed zone III

Figure 17.- Continued.

(d) Bleed zone IV

Figure 17.- Concluded.

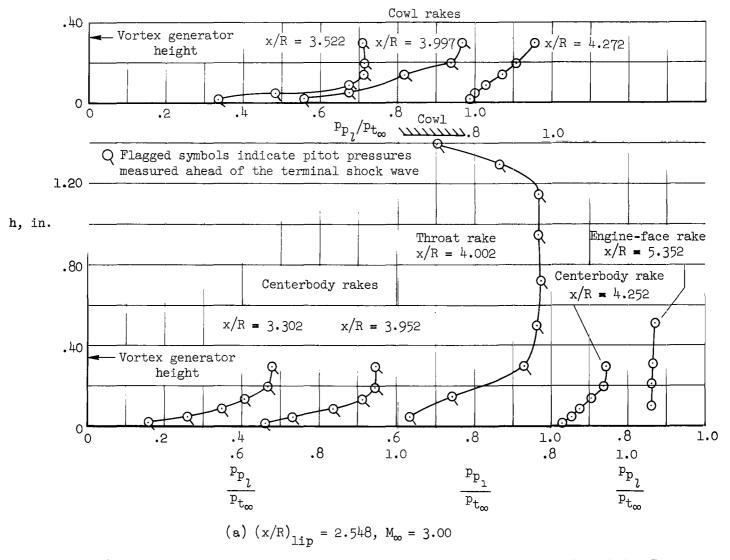
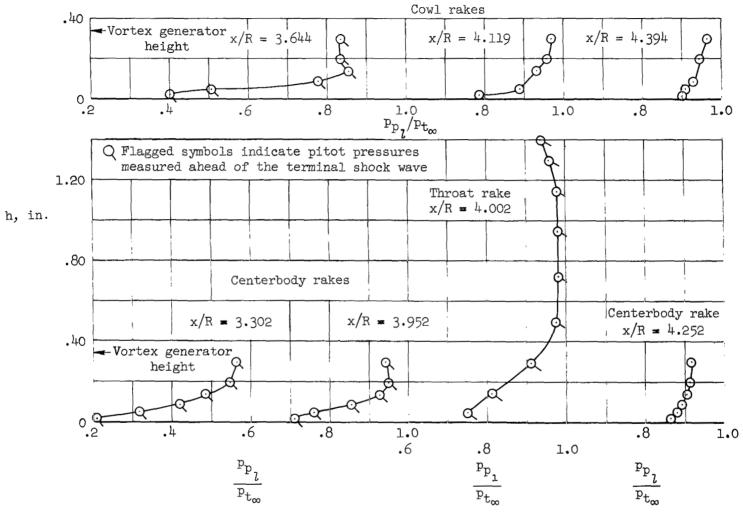
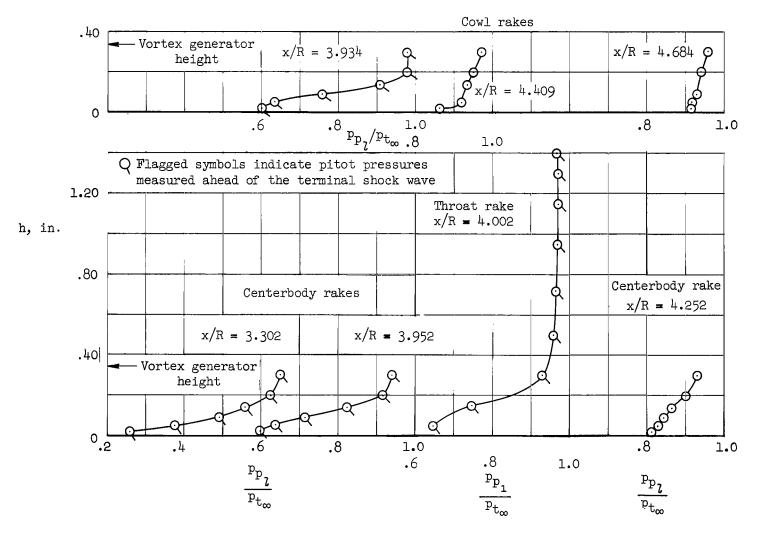




Figure 18.- Pitot pressure profiles, maximum pressure recovery; bleed exit setting B.

(b) $(x/R)_{lip} = 2.670$, $M_{\infty} = 2.75$

Figure 18.- Continued.

(c) $(x/R)_{lip} = 2.960, M_{\infty} = 2.50$

Figure 18.- Concluded.

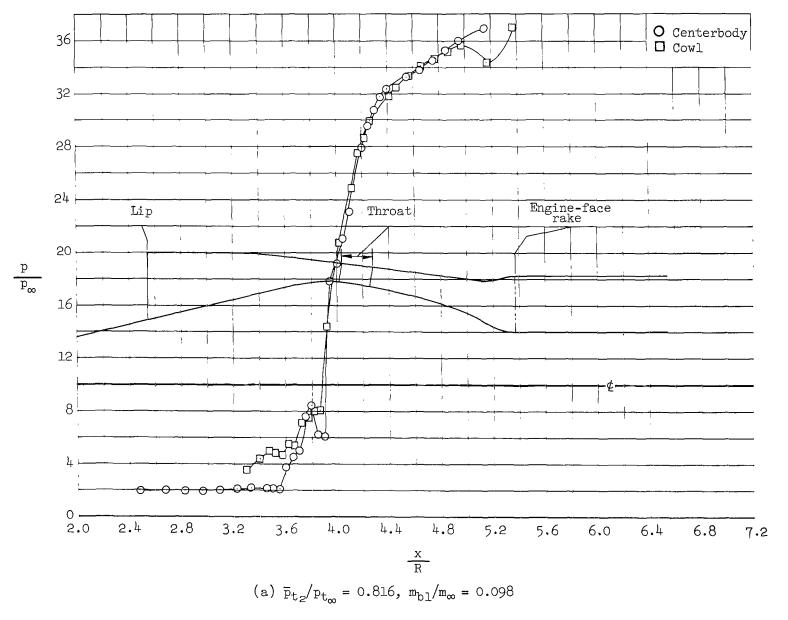


Figure 19.- Static pressure distribution; bleed exit setting B, $(x/R)_{\text{lip}} = 2.548$; $M_{\infty} = 3.20$, $\alpha = 0^{\circ}$.

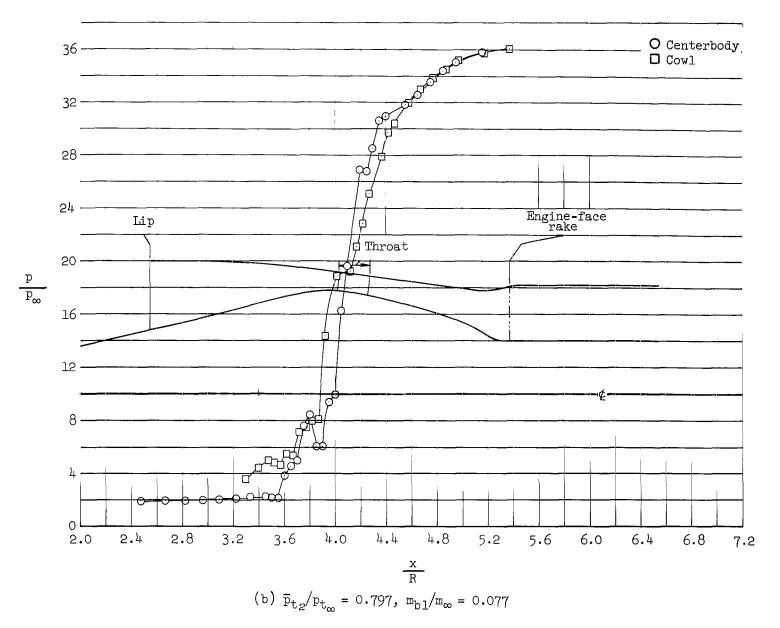
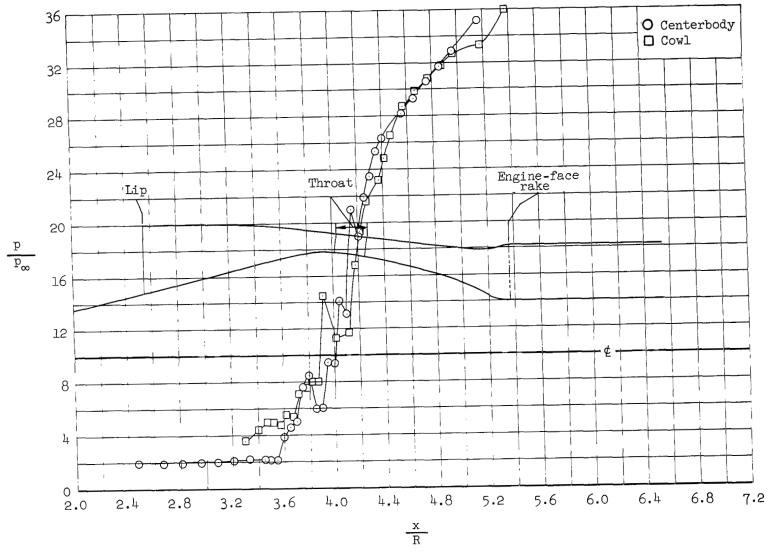



Figure 19.- Continued.

(c)
$$\bar{p}_{t_2}/p_{t_{\infty}} = 0.766$$
, $m_{bl}/m_{\infty} = 0.062$

Figure 19.- Concluded.

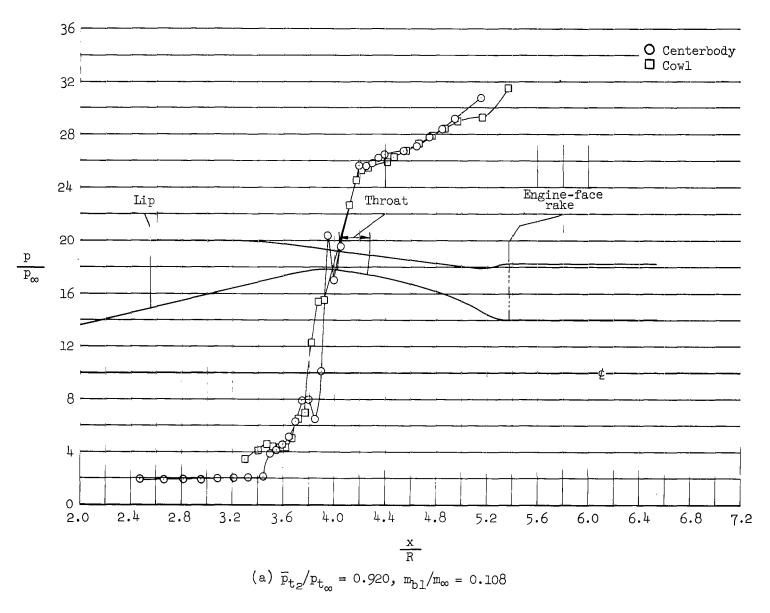
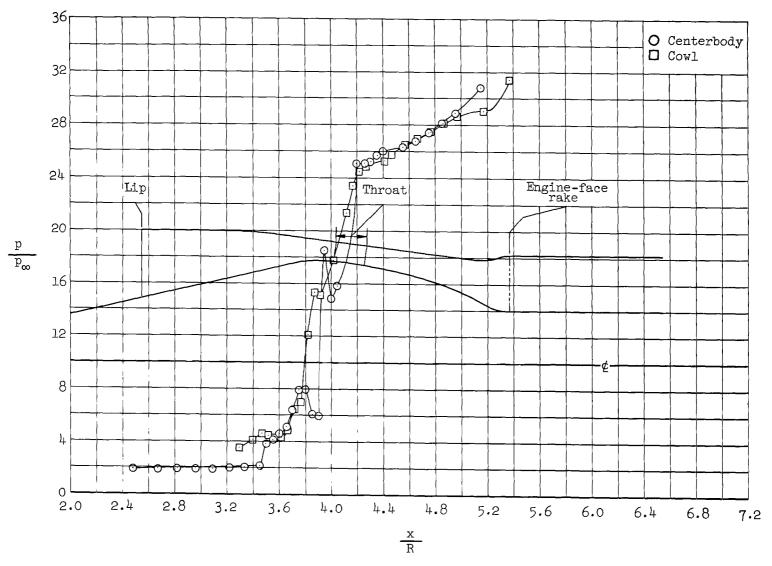



Figure 20.- Static pressure distribution; bleed exit setting B, $(x/R)_{lip} = 2.548$; $M_{\infty} = 3.00$, $\alpha = 0^{\circ}$.

(b) $\bar{p}_{t_2}/p_{t_{\infty}} = 0.922$, $m_{bl}/m_{\infty} = 0.097$

Figure 20. - Continued.

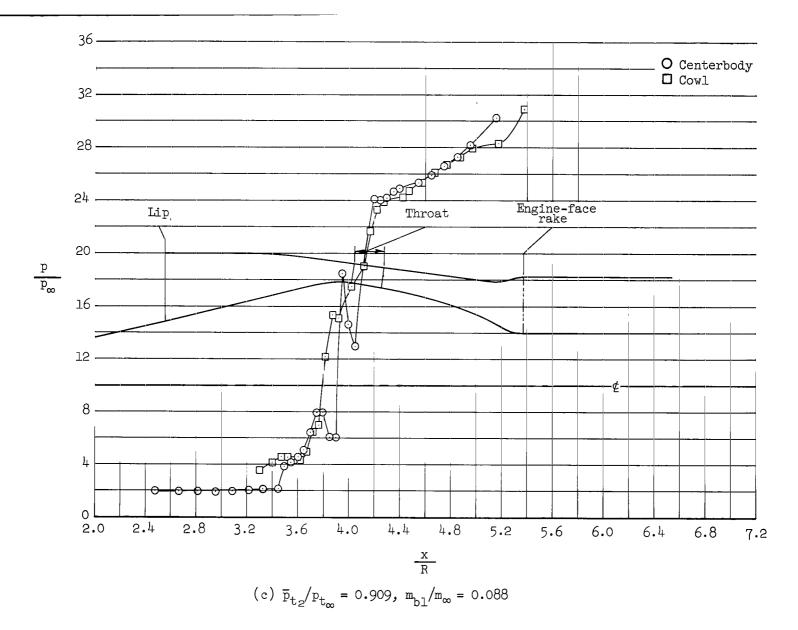
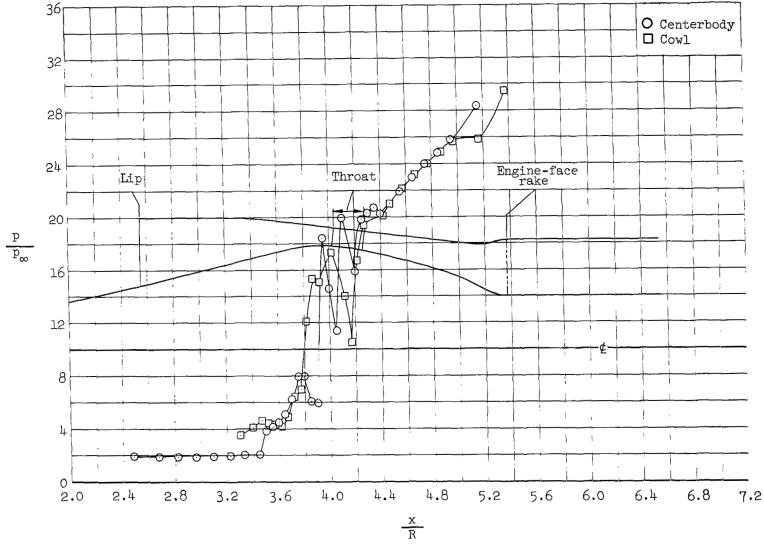



Figure 20.- Continued.

(d)
$$\bar{p}_{t_2}/p_{t_{\infty}} = 0.872$$
, $m_{bl}/m_{\infty} = 0.076$

Figure 20.- Concluded.

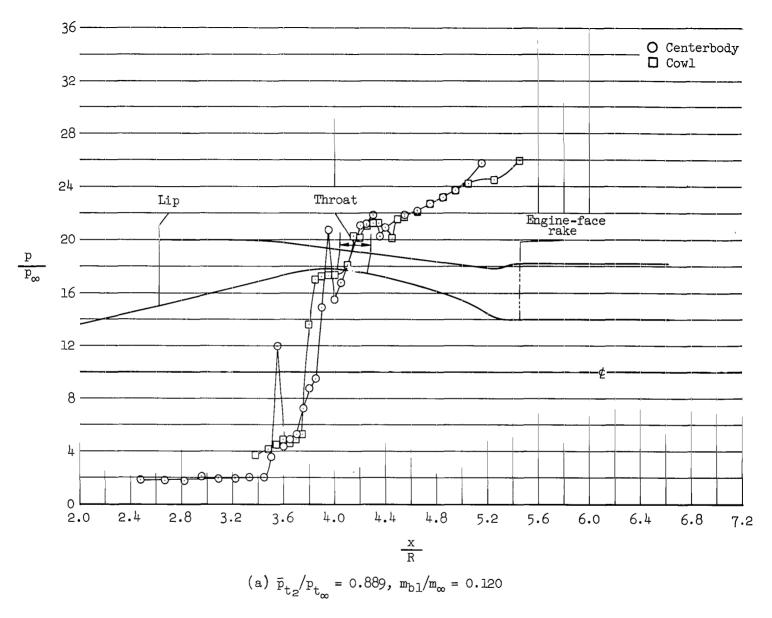
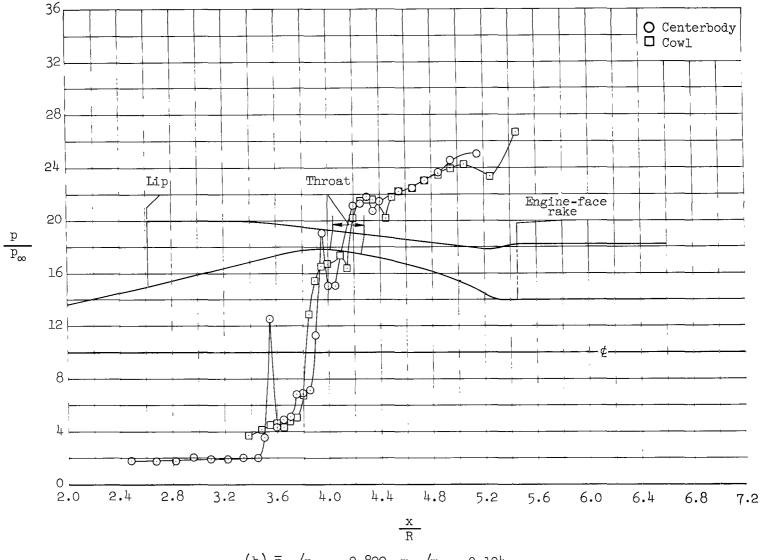



Figure 21.- Static pressure distribution; bleed exit setting B, $(x/R)_{\text{lip}}$ = 2.622; M_{∞} = 2.90, α = 0°.

(b) $\bar{p}_{t_2}/p_{t_{\infty}}$ = 0.899, m_{bl}/m_{∞} = 0.104

Figure 21. - Continued.

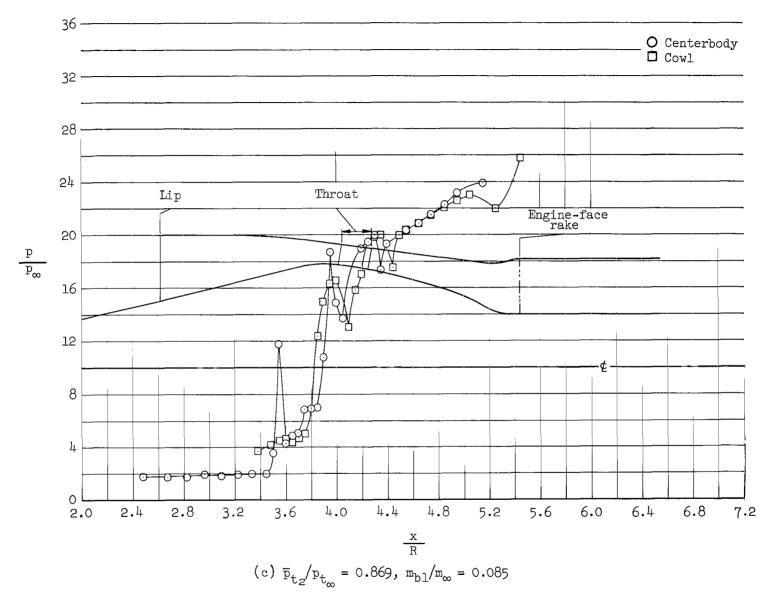


Figure 21. - Concluded.

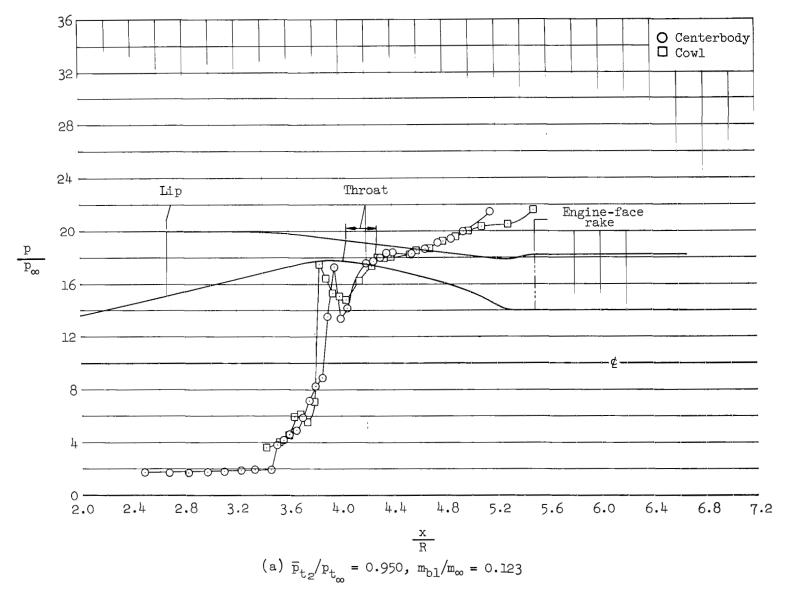


Figure 22.- Static pressure distribution; bleed exit setting B, $(x/R)_{lip} = 2.670$; $M_{\infty} = 2.75$, $\alpha = 0^{\circ}$.

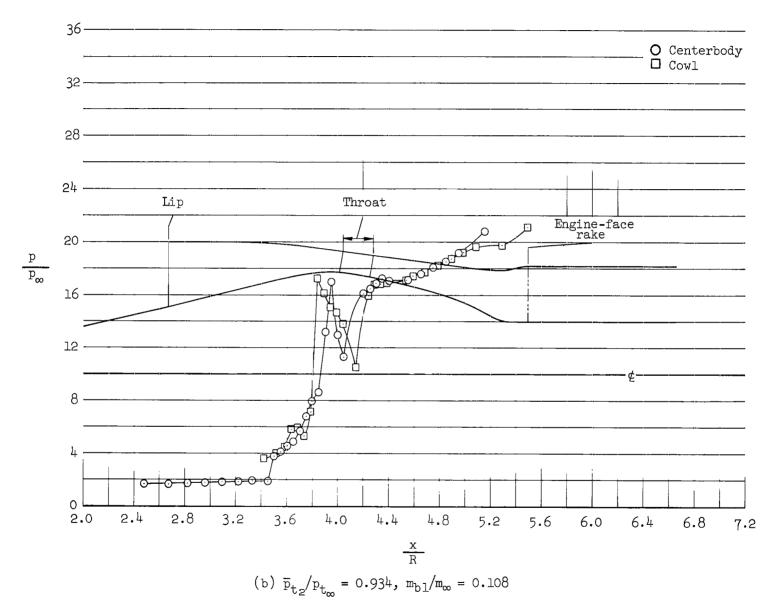
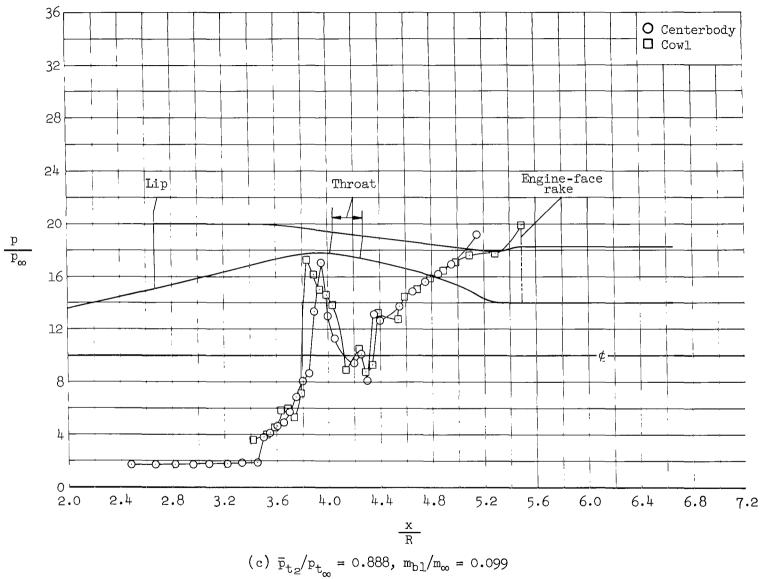



Figure 22.- Continued.

32 3_∞

Figure 22.- Concluded.

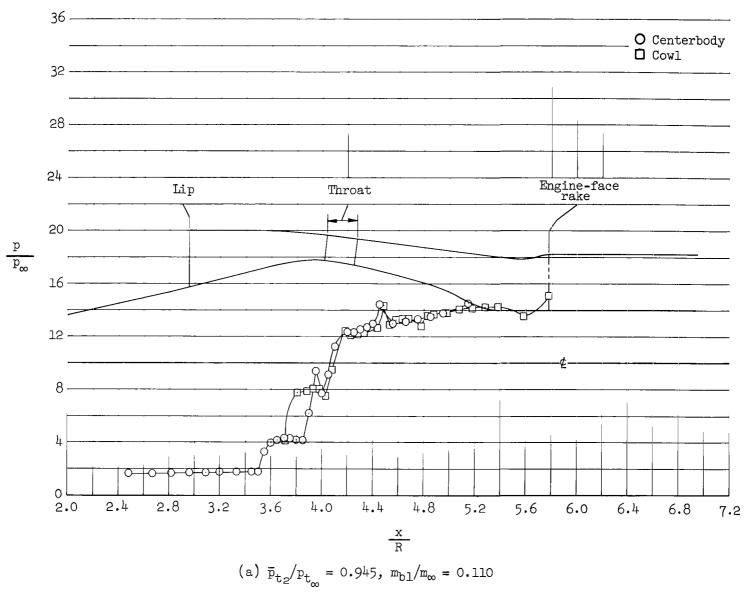
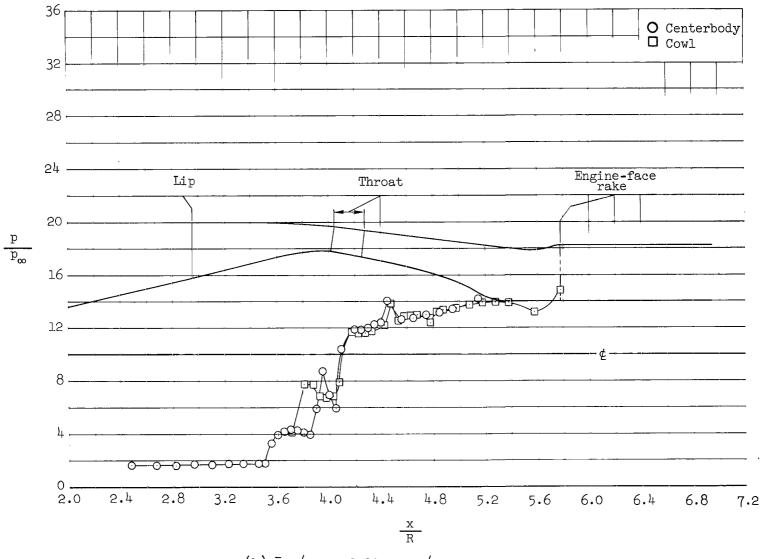



Figure 23.- Static pressure distribution; bleed exit setting B, $(x/R)_{lip}$ = 2.960; M_{∞} = 2.50, α = 0°.

(b) $\bar{p}_{t_2}/p_{t_{\infty}} = 0.932$, $m_{bl}/m_{\infty} = 0.100$

Figure 23.- Continued.

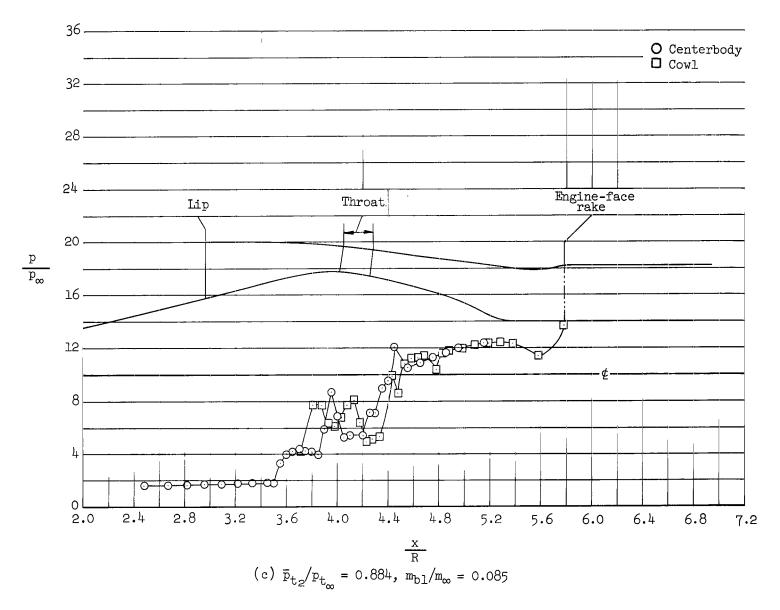


Figure 23.- Concluded.

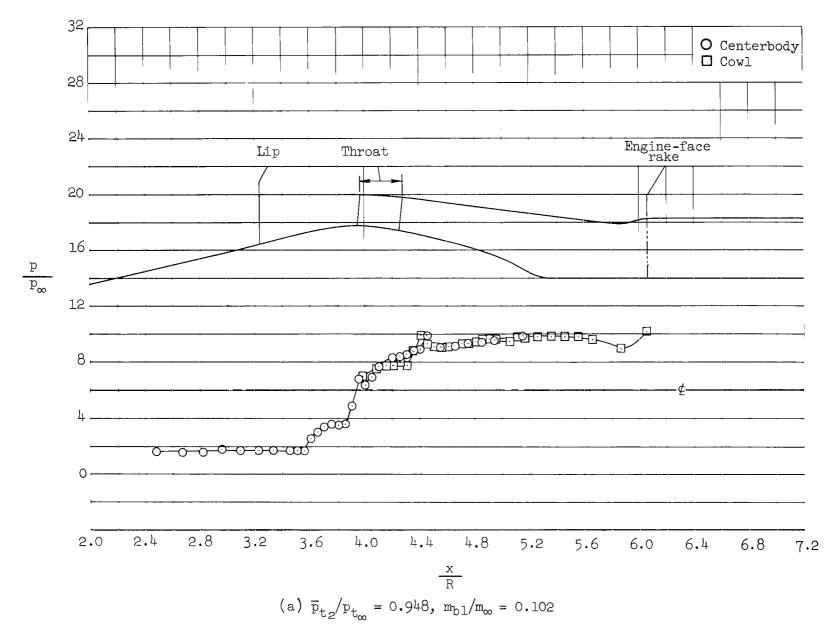
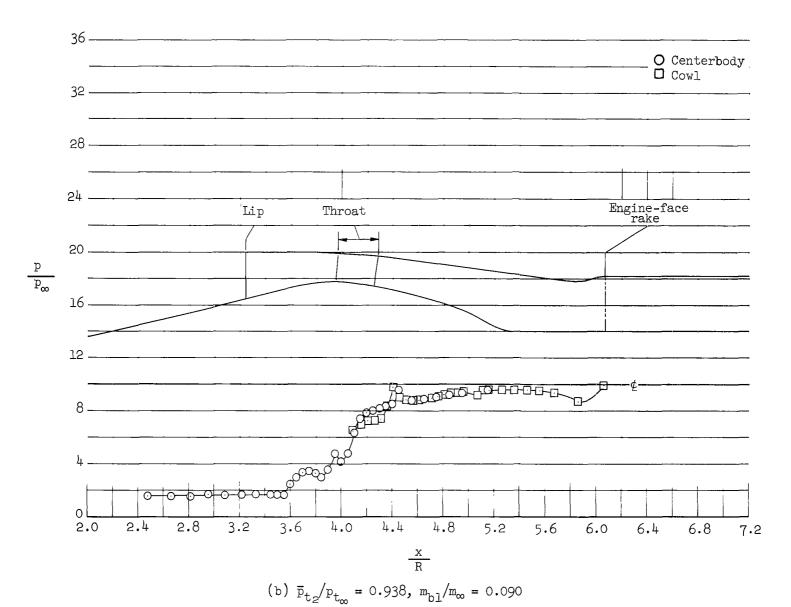



Figure 24.- Static pressure distribution; bleed exit setting B, $(x/R)_{lip} = 3.240$; $M_{\infty} = 2.25$, $\alpha = 0^{\circ}$.

m. ol a . . .

Figure 24.- Continued.

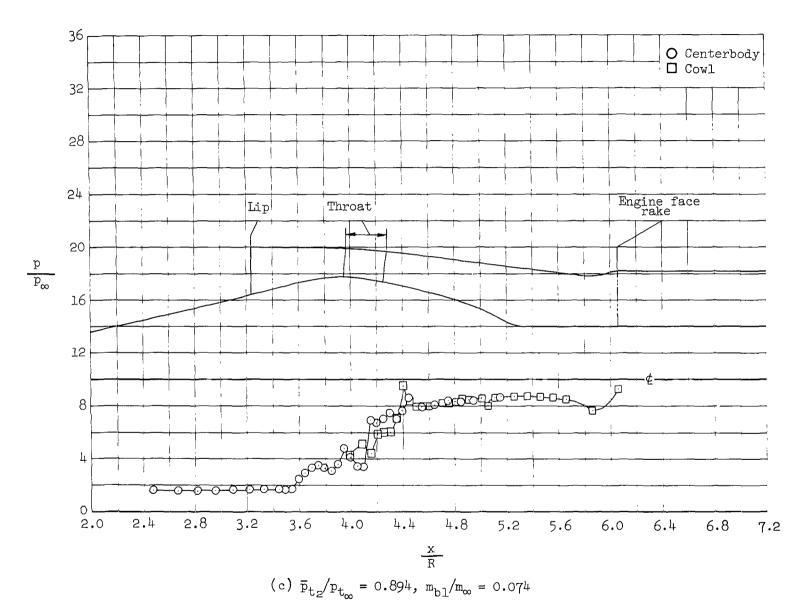


Figure 24.- Concluded.

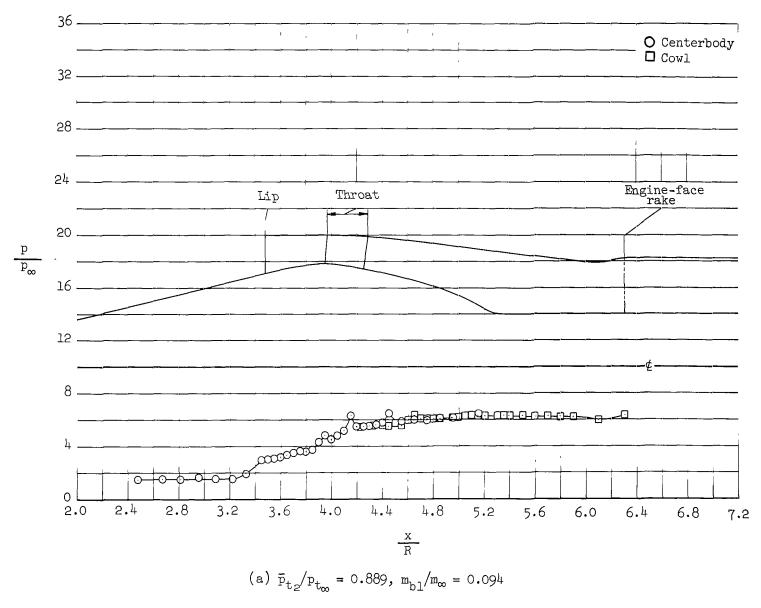
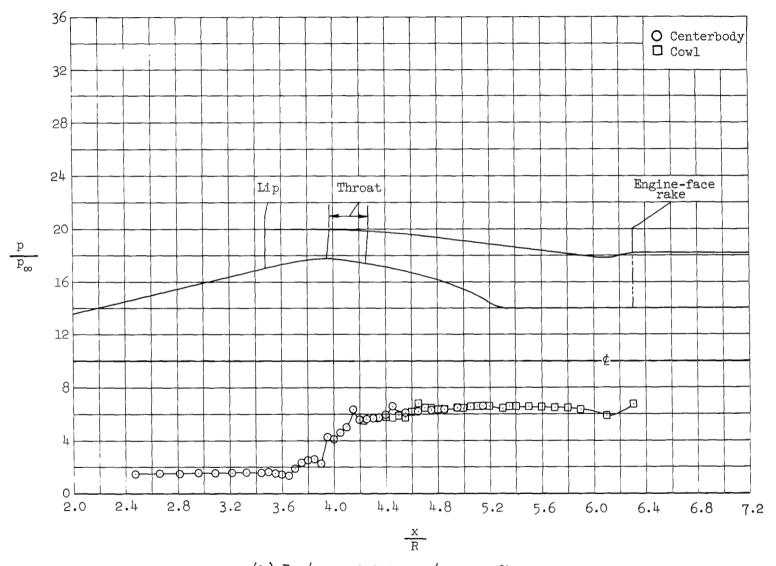



Figure 25.- Static pressure distribution; bleed exit setting B, $(x/R)_{lip} = 3.478$; $M_{\infty} = 2.00$, $\alpha = 0^{\circ}$.

(b) $\bar{p}_{t_2}/p_{t_{\infty}} = 0.935$, $m_{bl}/m_{\infty} = 0.084$

Figure 25.- Continued.

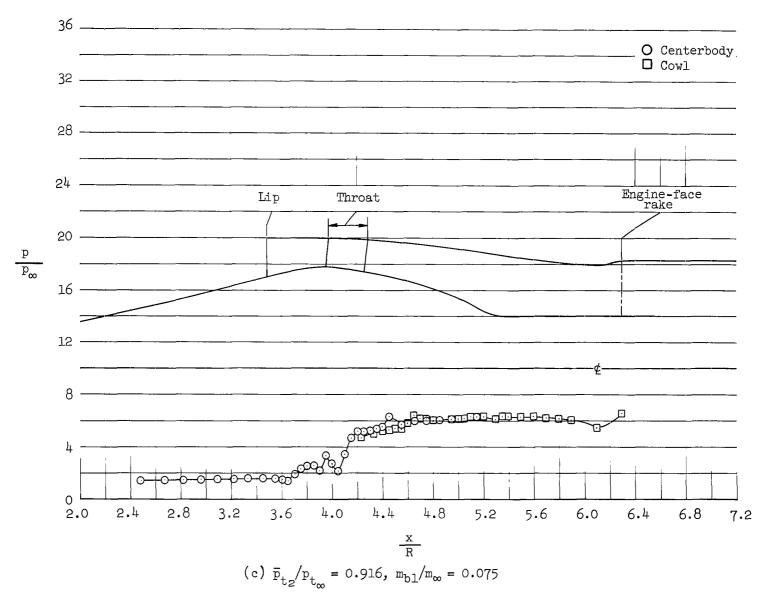


Figure 25.- Concluded.

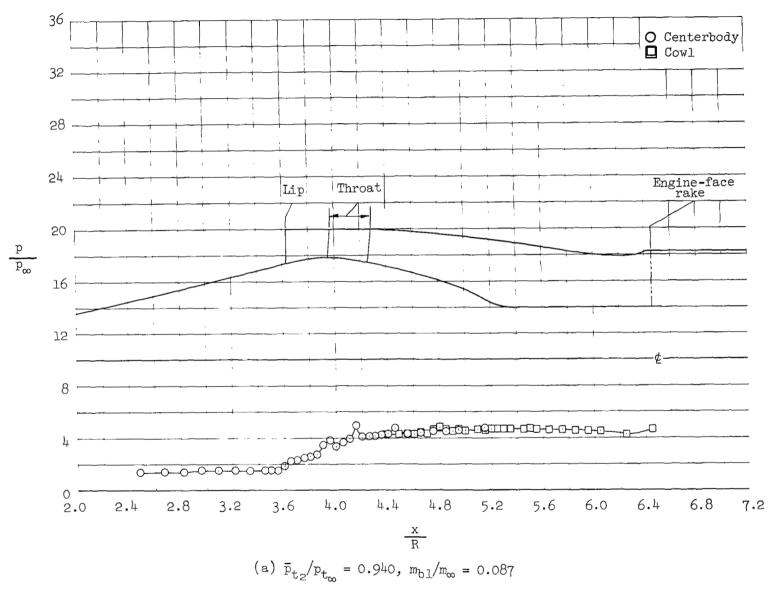


Figure 26.- Static pressure distribution; bleed exit setting B, $(x/R)_{lip} = 3.628$; $M_{\infty} = 1.75$, $\alpha = 0^{\circ}$.

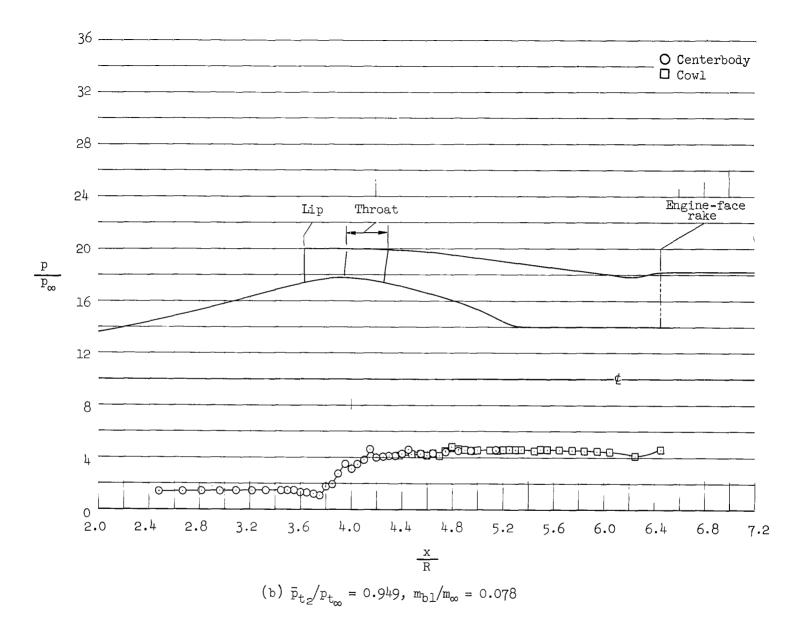


Figure 26.- Continued.

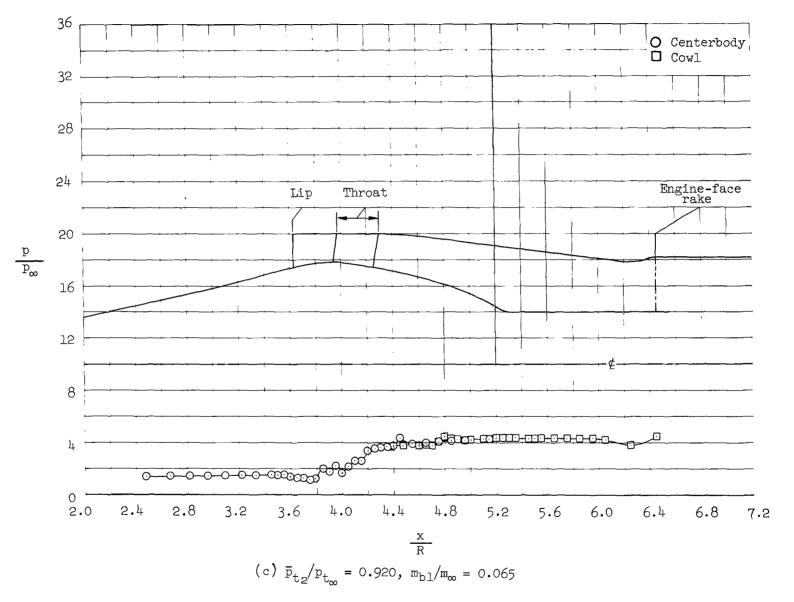


Figure 26.- Concluded.

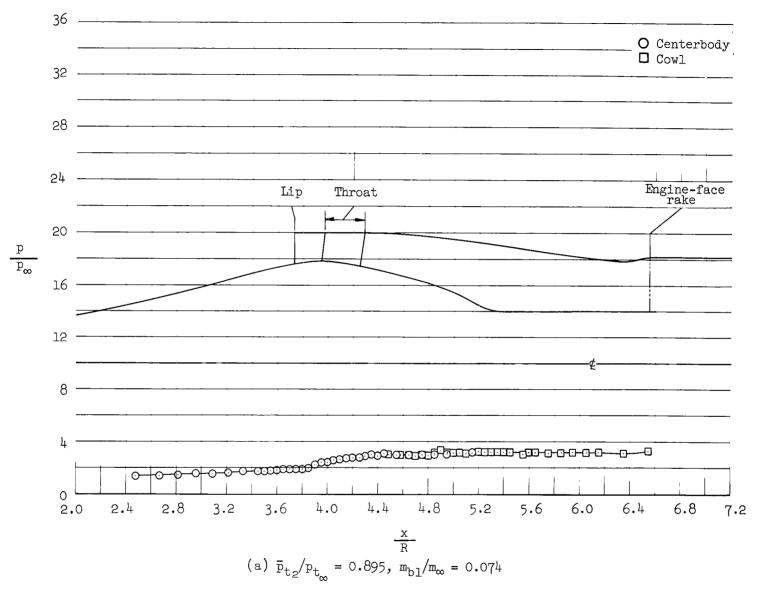


Figure 27.- Static pressure distribution; bleed exit setting B, $(x/R)_{\text{lip}} = 3.728$; $M_{\infty} = 1.55$, $\alpha = 0^{\circ}$.

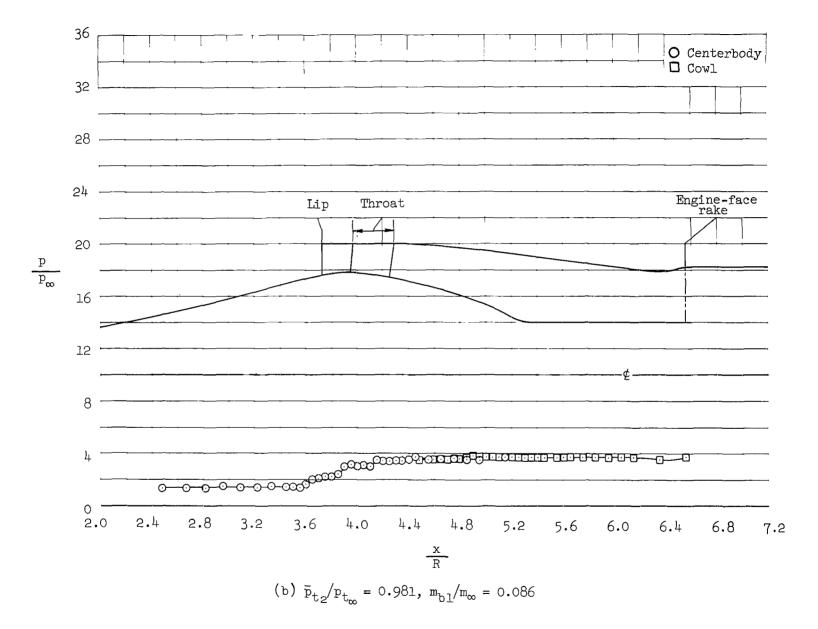


Figure 27.- Continued.

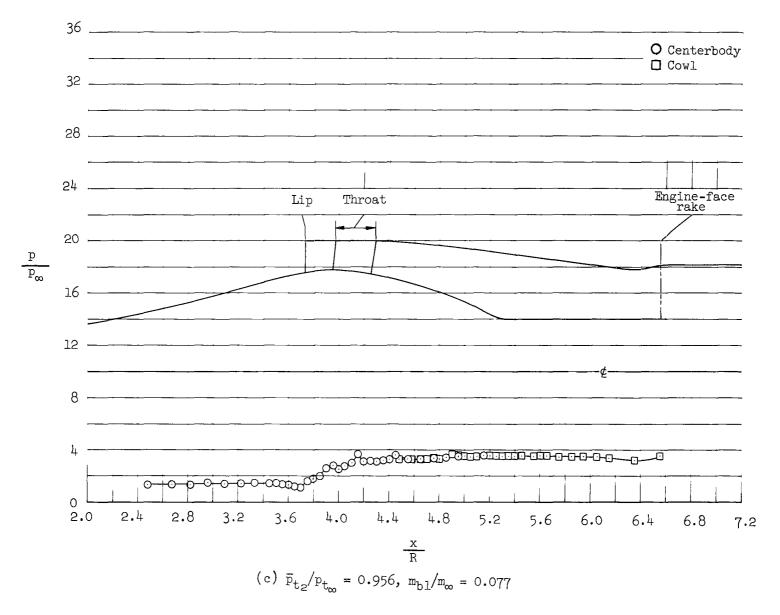


Figure 27. - Concluded.

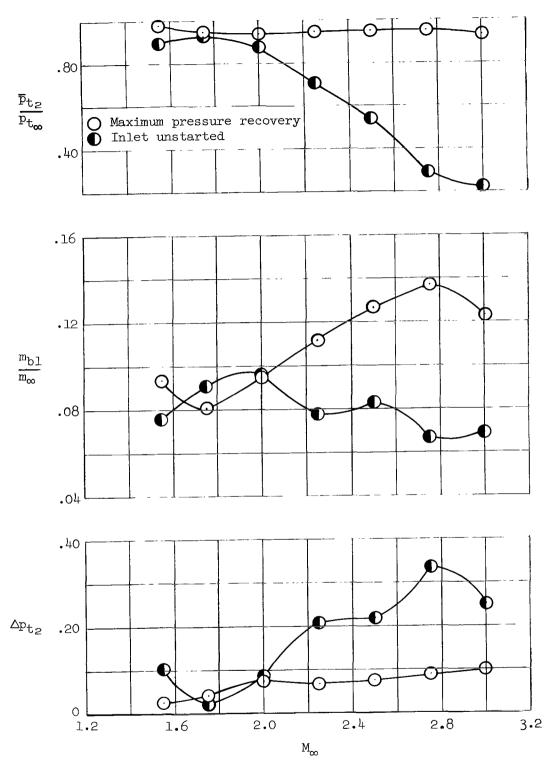


Figure 28.- Effect of unstarting the inlet on the main performance parameters; bleed exit setting A; α = 0°.

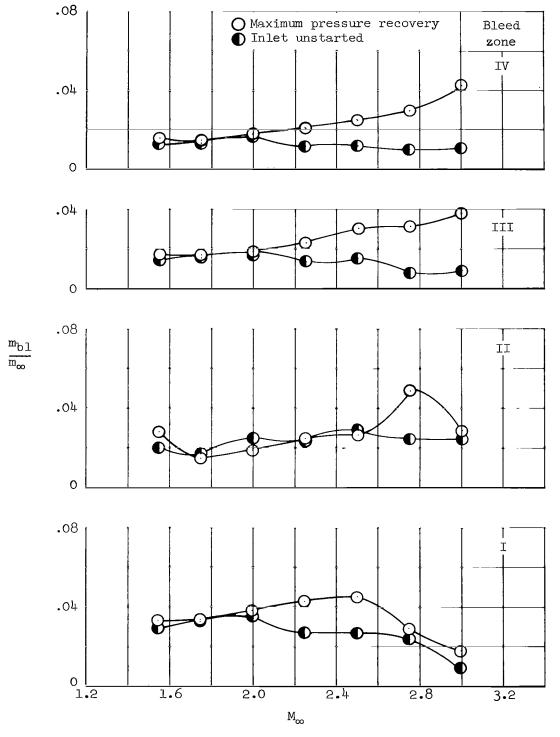


Figure 29.- Effect of unstarting the inlet on the individual bleed flows; bleed exit setting A; α = 0°.

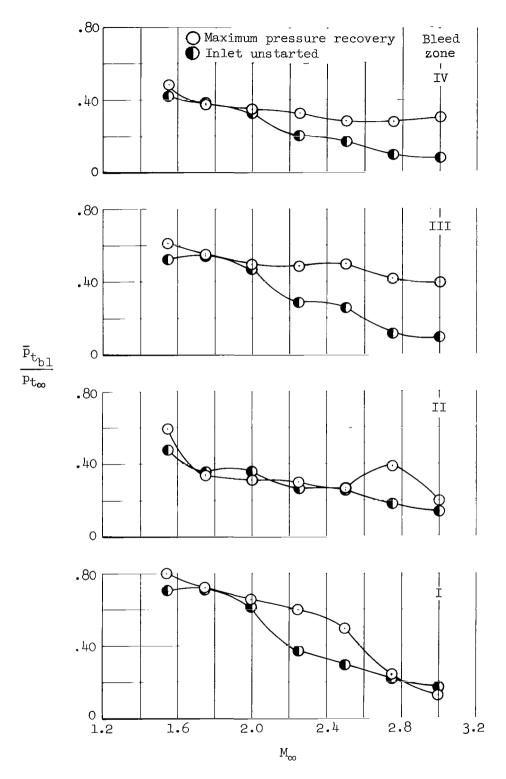


Figure 30.- Effect of unstarting the inlet on the individual bleed plenum chamber pressure recoveries; bleed exit setting A; α = 0°.

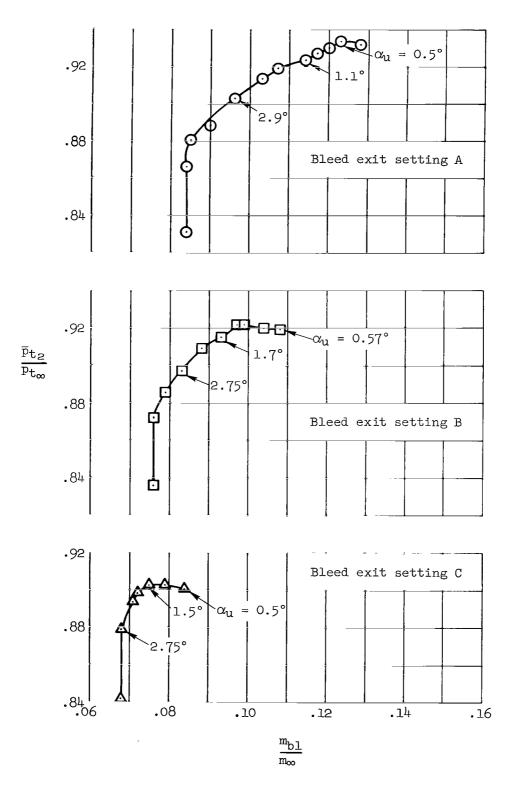


Figure 31.- Inlet tolerance to angle of attack; M_{∞} = 3.00, α = 0°; (x/R)_{lip} = 2.548.

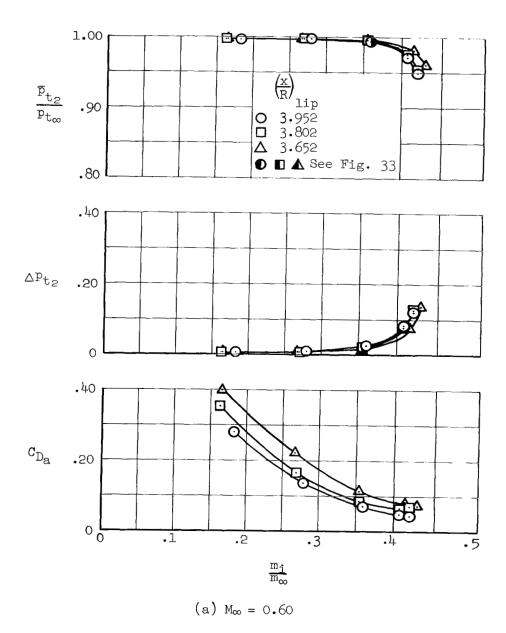


Figure 32.- Transonic performance; bleed exit setting B; $\alpha = 0^{\circ}$.

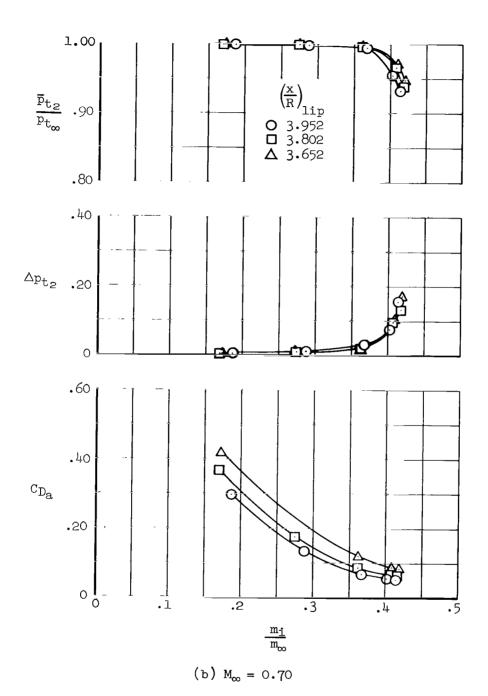


Figure 32.- Continued.

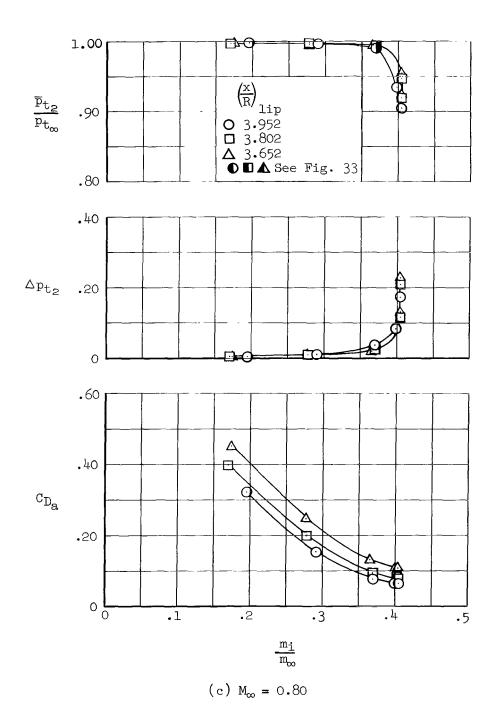
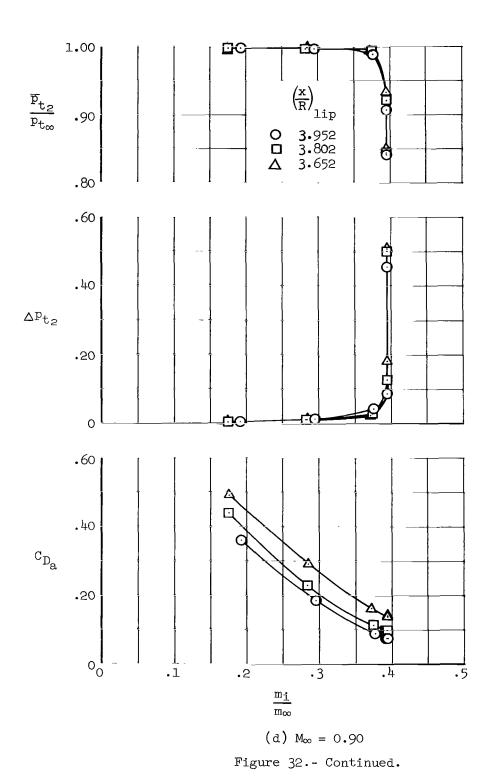



Figure 32.- Continued.

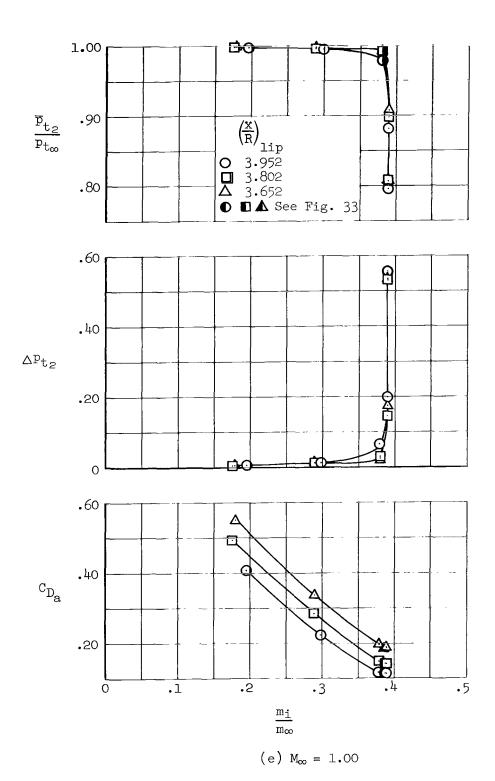


Figure 32.- Continued.

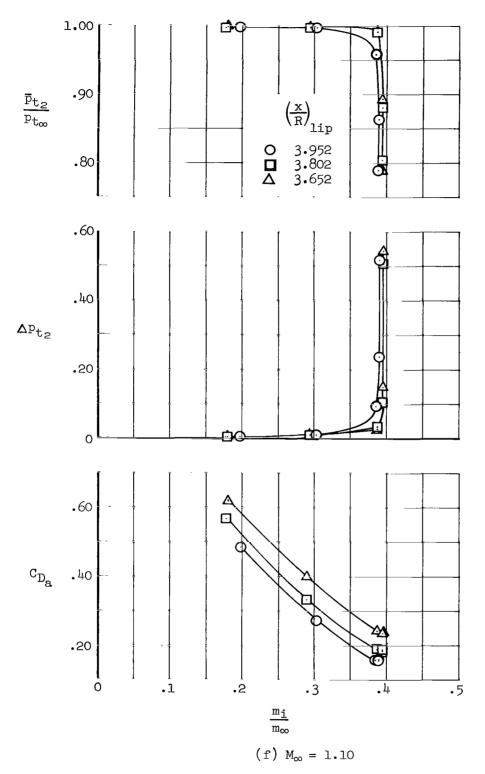


Figure 32.- Continued.

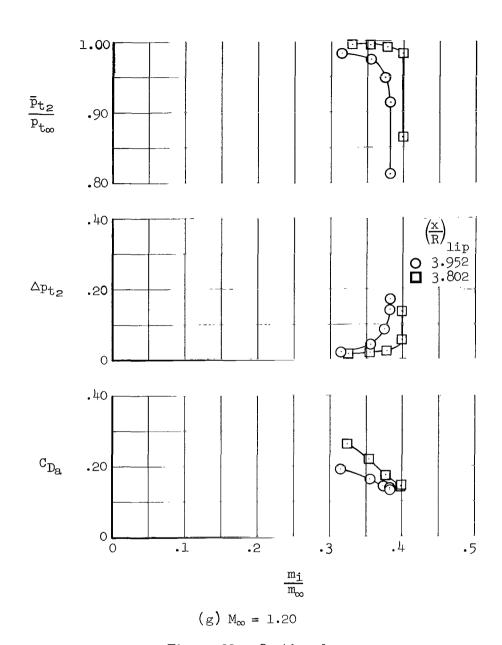


Figure 32.- Continued.

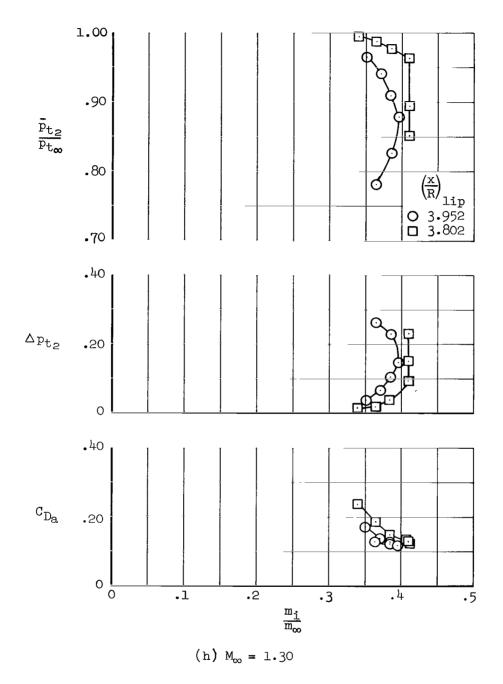


Figure 32.- Concluded.

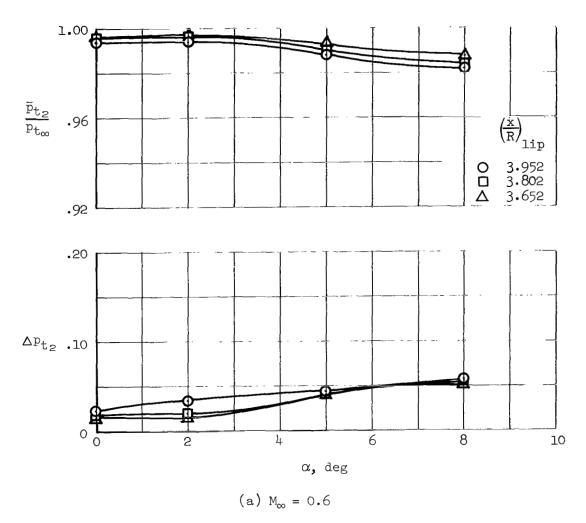


Figure 33.- Transonic performance at angle of attack.

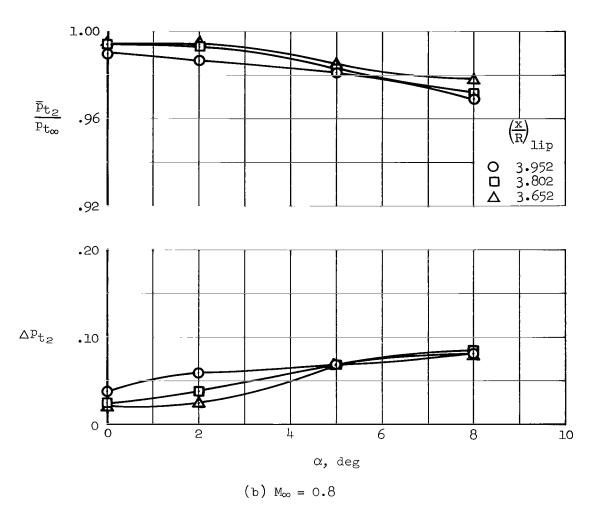


Figure 33.- Continued.

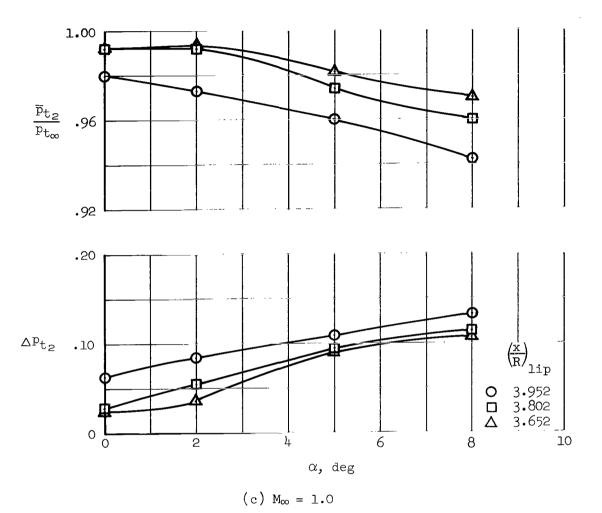


Figure 33.- Concluded.

000 001 53 51 30S 68106 00003 AIR FORCE MEMPENS LABERATURY/AFWL/ KIRTLA W AIR FORCE BASE, NEW MEXICO 87117

ATT MINE SADELIE E. CALLER, CHICK TESH.ICA

POSTMASTER: I

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

- NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546